PLEdestrians: a least-effort approach to crowd simulation

We present a new algorithm for simulating large-scale crowds at interactive rates based on the Principle of Least Effort. Our approach uses an optimization method to compute a biomechanically energy-efficient, collision-free trajectory that minimizes the amount of effort for each heterogeneous agent in a large crowd. Moreover, the algorithm can automatically generate many emergent phenomena such as lane formation, crowd compression, edge and wake effects ant others. We compare the results from our simulations to data collected from prior studies in pedestrian and crowd dynamics, and provide visual comparisons with real-world video. In practice, our approach can interactively simulate large crowds with thousands of agents on a desktop PC and naturally generates a diverse set of emergent behaviors.

[1]  Norman I. Badler,et al.  Controlling individual agents in high-density crowd simulation , 2007, SCA '07.

[2]  Abdullah Zawawi Talib,et al.  Simulating Crowd Movements Using Fine Grid Cellular Automata , 2010, 2010 12th International Conference on Computer Modelling and Simulation.

[3]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[4]  George Kingsley Zipf,et al.  Human behavior and the principle of least effort , 1949 .

[5]  Dinesh Manocha,et al.  Real-time navigation of independent agents using adaptive roadmaps , 2007, VRST '07.

[6]  Marshall F. Tappen,et al.  Learning pedestrian dynamics from the real world , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[7]  Dinesh Manocha,et al.  Interactive navigation of multiple agents in crowded environments , 2008, I3D '08.

[8]  Barbara Yersin,et al.  Steering a Virtual Crowd Based on a Semantically Augmented Navigation Graph , 2005 .

[9]  Dinesh Manocha,et al.  Directing Crowd Simulations Using Navigation Fields , 2011, IEEE Transactions on Visualization and Computer Graphics.

[10]  J B King,et al.  Gait Analysis. An Introduction , 1992 .

[11]  D. T. Pham,et al.  Derivation of optimal walking motions for a bipedal walking robot , 1992, Robotica.

[12]  Dirk Helbing,et al.  Simulating dynamical features of escape panic , 2000, Nature.

[13]  Jih-Gau Juang Minimal energy control on trajectory generation , 1999, Proceedings 1999 International Conference on Information Intelligence and Systems (Cat. No.PR00446).

[14]  Dinesh Manocha,et al.  ClearPath: highly parallel collision avoidance for multi-agent simulation , 2009, SCA '09.

[15]  Mark H. Overmars,et al.  Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2004) , 2022 .

[16]  Mark H. Overmars,et al.  A Predictive Collision Avoidance Model for Pedestrian Simulation , 2009, MIG.

[17]  Dinesh Manocha,et al.  Reciprocal n-Body Collision Avoidance , 2011, ISRR.

[18]  Adrien Treuille,et al.  Continuum crowds , 2006, SIGGRAPH 2006.

[19]  John J. Fruin,et al.  Pedestrian planning and design , 1971 .

[20]  Rahul Narain,et al.  Aggregate dynamics for dense crowd simulation , 2009, SIGGRAPH 2009.

[21]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[22]  Demetri Terzopoulos,et al.  Autonomous pedestrians , 2005, SCA '05.

[23]  Hwan-Gue Cho,et al.  An efficient control over human running animation with extension of planar hopper model , 1998, Proceedings Pacific Graphics '98. Sixth Pacific Conference on Computer Graphics and Applications (Cat. No.98EX208).

[24]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  Ming C. Lin,et al.  Aggregate dynamics for dense crowd simulation , 2009, ACM Trans. Graph..

[26]  Carlos Canudas-de-Wit,et al.  Generation of energy optimal complete gait cycles for biped robots , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[27]  Stephen Chenney,et al.  Flow tiles , 2004, SCA '04.

[28]  Dirk Helbing,et al.  Specification of the Social Force Pedestrian Model by Evolutionary Adjustment to Video Tracking Data , 2007, Adv. Complex Syst..

[29]  Stéphane Donikian,et al.  Experiment-based modeling, simulation and validation of interactions between virtual walkers , 2009, SCA '09.

[30]  Dinesh Manocha,et al.  Reciprocal Velocity Obstacles for real-time multi-agent navigation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[31]  Charlie C. L. Wang,et al.  Interactive Control of Large-Crowd Navigation in Virtual Environments Using Vector Fields , 2008, IEEE Computer Graphics and Applications.

[32]  Michael W. Whittle,et al.  Gait Analysis: An Introduction , 1986 .

[33]  Nancy M. Amato,et al.  Better Group Behaviors in Complex Environments using Global Roadmaps , 2002 .

[34]  Demetri Terzopoulos,et al.  A decision network framework for the behavioral animation of virtual humans , 2007, SCA '07.

[35]  Craig W. Reynolds Steering Behaviors For Autonomous Characters , 1999 .

[36]  Dinesh Manocha,et al.  Real-time navigation of independent agents using adaptive roadmaps , 2008, SIGGRAPH '08.

[37]  A. P. Masucci,et al.  Random planar graphs and the London street network , 2009, 0903.5440.

[38]  Dinesh Manocha,et al.  Interactive Navigation of Heterogeneous Agents Using Adaptive Roadmaps , 2009, IEEE Transactions on Visualization and Computer Graphics.

[39]  Norman I. Badler,et al.  Virtual Crowds: Methods, Simulation, and Control , 2008, Virtual Crowds: Methods, Simulation, and Control.