A simulated annealing algorithm for fuzzy unit commitment problem

This paper presents a new algorithm based on integrating simulated annealing and fuzzy logic methods to solve the unit commitment problem. The uncertainties in the load demand and the spinning reserve constraints are formulated in a fuzzy logic frame. The simulated annealing is used to solve the combinatorial part of the unit commitment problem, while the nonlinear part of the problem is solved via a quadratic programming routine. A simple cooling schedule has been implemented to apply the simulated annealing test in the algorithm. Numerical results show the superiority of the solutions obtained compared to the classical methods and the simulated annealing method as individual.

[1]  F. Albuyeh,et al.  Evaluation of Dynamic Programming Based Methods and Multiple area Representation for Thermal Unit Commitments , 1981, IEEE Transactions on Power Apparatus and Systems.

[2]  Yuan-Yih Hsu,et al.  Short term load forecasting of Taiwan power system using a knowledge-based expert system , 1990 .

[3]  Malcolm Irving,et al.  A genetic algorithm for generator scheduling in power systems , 1996 .

[4]  A. Turgeon Optimal scheduling of thermal generating units , 1978 .

[5]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[6]  Shokri Z. Selim,et al.  A simulated annealing algorithm for the clustering problem , 1991, Pattern Recognit..

[7]  Emile H. L. Aarts,et al.  Simulated annealing and Boltzmann machines - a stochastic approach to combinatorial optimization and neural computing , 1990, Wiley-Interscience series in discrete mathematics and optimization.

[8]  Allen J. Wood,et al.  Power Generation, Operation, and Control , 1984 .

[9]  S. M. Shahidehpour,et al.  A heuristic short-term unit commitment , 1991 .

[10]  A. H. Mantawy,et al.  A new genetic-based tabu search algorithm for unit commitment problem , 1999 .

[11]  Shokri Z. Selim,et al.  A new genetic algorithm approach for unit commitment , 1997 .

[12]  Yuan-Yih Hsu,et al.  Fuzzy dynamic programming: an application to unit commitment , 1991 .

[13]  Francisco D. Galiana,et al.  Unit commitment by simulated annealing , 1990 .

[14]  Robert E. Smith,et al.  A genetic algorithm based approach to thermal unit commitment of electric power systems , 1995 .

[15]  Philip G. Hill,et al.  Power generation , 1927, Journal of the A.I.E.E..

[16]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[17]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[18]  Gerald B. Sheblé,et al.  Unit commitment literature synopsis , 1994 .

[19]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[20]  Jonathan F. Bard,et al.  Short-Term Scheduling of Thermal-Electric Generators Using Lagrangian Relaxation , 1988, Oper. Res..

[21]  A.H. Mantawy,et al.  A new simulated annealing-based tabu search algorithm for unit commitment , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[22]  A. H. Mantawy,et al.  Unit commitment by tabu search , 1998 .

[23]  A. D. Patton,et al.  Optimal Thermal Generating Unit Commitment , 1971 .

[24]  A. H. Mantawy,et al.  A simulated annealing algorithm for unit commitment , 1998 .

[25]  A. C. Liew,et al.  Forecasting daily load curves using a hybrid fuzzy-neural approach , 1994 .

[26]  Y.-Y. Hsu,et al.  Fuzzy expert systems: an application to short-term load forecasting , 1992 .