Robust weighted fusion time-varying Kalman smoothers for multisensor system with uncertain noise variances

This paper addresses the design of robust weighted fusion time-varying Kalman smoothers for multisensor time-varying system with uncertain noise variances by the augmented state approach. According to the minimax robust estimation principle and the unbiased linear minimum variance (ULMV) optimal estimation rule, the six robust weighted fusion time-varying Kalman smoothers are presented based on the worst-case conservative system with the conservative upper bounds of noise variances. The actual smoothing error variances of each fuser are guaranteed to have a minimal upper bound for all admissible uncertainties. Their robustness is proved by the Lyapunov equation approach. Their robust accuracy relations are analyzed and proved. Specially, the corresponding steady-state robust Kalman smoothers are also presented for multisensor time-invariant system, and the convergence in a realization between the time-varying and steady-state robust Kalman smoothers is proved by the dynamic error system analysis (DESA) method and dynamic variance error system analysis (DVESA) method. A simulation example is given to verify the robustness and robust accuracy relations.

[1]  Zidong Wang Optimal and robust estimation. F. Lewis, L. Xie and D. Popa, CRC Press, Boca Raton, FL, 2007 , 2009 .

[2]  Yunmin Zhu,et al.  Minimax Robust Optimal Estimation Fusion in Distributed Multisensor Systems With Uncertainties , 2010, IEEE Signal Processing Letters.

[3]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[4]  Peng Zhang,et al.  Robust weighted fusion Kalman filters for multisensor time-varying systems with uncertain noise variances , 2014, Signal Process..

[5]  Z. Deng,et al.  Information fusion Wiener filter for the multisensor multichannel ARMA signals with time-delayed measurements , 2009 .

[6]  Yeng Chai Soh,et al.  Robust Kalman filtering for uncertain discrete-time systems with probabilistic parameters bounded within a polytope , 2008, Syst. Control. Lett..

[7]  Yuan Gao,et al.  Self-tuning decoupled information fusion Wiener state component filters and their convergence , 2008, Autom..

[8]  Tomomichi Hagiwara,et al.  A dilated LMI approach to robust performance analysis of linear time-invariant uncertain systems , 2003, Proceedings of the 2003 American Control Conference, 2003..

[9]  E. Kamen,et al.  Introduction to Optimal Estimation , 1999 .

[10]  Zidong Wang,et al.  Robust filtering under randomly varying sensor delay with variance constraints , 2003, ECC.

[11]  Lihua Xie,et al.  Design and analysis of discrete-time robust Kalman filters , 2002, Autom..

[12]  Y. Soh,et al.  Robust Kalman filtering for discrete state-delay systems , 2000 .

[13]  Sun You-xian Centralized fusion estimation for uncertain multisensor system based on LMI method , 2006 .

[14]  Peng Zhang,et al.  Robust weighted fusion Kalman predictors with uncertain noise variances , 2014, Digit. Signal Process..

[15]  Fan Wang,et al.  Robust Kalman filters for linear time-varying systems with stochastic parametric uncertainties , 2002, IEEE Trans. Signal Process..

[16]  Ming Zeng,et al.  Distributed weighted robust Kalman filter fusion for uncertain systems with autocorrelated and cross-correlated noises , 2013, Inf. Fusion.

[17]  Yuan Gao,et al.  The accuracy comparison of multisensor covariance intersection fuser and three weighting fusers , 2013, Inf. Fusion.

[18]  C. Ran,et al.  Self-Tuning Decoupled Fusion Kalman Predictor and Its Convergence Analysis , 2009, IEEE Sensors Journal.

[19]  Lihua Xie,et al.  New approaches to robust minimum variance filter design , 2001, IEEE Trans. Signal Process..

[20]  Fuwen Yang,et al.  Robust Kalman filtering for discrete time-varying uncertain systems with multiplicative noises , 2002, IEEE Trans. Autom. Control..

[21]  Jeffrey K. Uhlmann,et al.  A non-divergent estimation algorithm in the presence of unknown correlations , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[22]  Peng Zhang,et al.  Weighted Fusion Robust Steady-State Kalman Filters for Multisensor System with Uncertain Noise Variances , 2014, J. Appl. Math..

[23]  Jeffrey K. Uhlmann,et al.  Using covariance intersection for SLAM , 2007, Robotics Auton. Syst..

[24]  Henry Leung,et al.  Covariance intersection based image fusion technique with application to pansharpening in remote sensing , 2010, Inf. Sci..

[25]  Uri Shaked,et al.  Robust discrete-time minimum-variance filtering , 1996, IEEE Trans. Signal Process..

[26]  Yuan Gao,et al.  Self-Tuning Multisensor Weighted Measurement Fusion Kalman Filter , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[27]  Jeffrey K. Uhlmann,et al.  General Decentralized Data Fusion With Covariance Intersection (CI) , 2001 .

[28]  James Llinas,et al.  An introduction to multisensor data fusion , 1997, Proc. IEEE.

[29]  Ali H. Sayed,et al.  Linear Estimation (Information and System Sciences Series) , 2000 .

[30]  Shu-Li Sun,et al.  Multi-sensor optimal information fusion Kalman filter , 2004, Autom..

[31]  Yuan Gao,et al.  Sequential covariance intersection fusion Kalman filter , 2012, Inf. Sci..

[32]  Mircea Lazar,et al.  State fusion with unknown correlation: Ellipsoidal intersection , 2010, Proceedings of the 2010 American Control Conference.

[33]  Fuwen Yang,et al.  Decentralized robust Kalman filtering for uncertain stochastic systems over heterogeneous sensor networks , 2008, Signal Process..

[34]  Yuan Gao,et al.  New approach to information fusion steady-state Kalman filtering , 2005, Autom..

[35]  L. D. Liu,et al.  Robust Kalman filtering for discrete-time nonlinear systems with parameter uncertainties , 2012 .

[36]  David Zhang,et al.  Improved robust H2 and Hinfinity filtering for uncertain discrete-time systems , 2004, Autom..

[37]  Zi-Li Deng,et al.  Self-tuning distributed measurement fusion Kalman estimator for the multi-channel ARMA signal , 2011, Signal Process..

[38]  Jacques Waldmann,et al.  Covariance intersection-based sensor fusion for sounding rocket tracking and impact area prediction , 2007 .

[39]  Zheng You,et al.  Finite-horizon robust Kalman filtering for uncertain discrete time-varying systems with uncertain-covariance white noises , 2006, IEEE Signal Processing Letters.

[40]  Jie Zhou,et al.  The optimal robust finite-horizon Kalman filtering for multiple sensors with different stochastic failure rates , 2013, Appl. Math. Lett..

[41]  Xiaojun Sun,et al.  Optimal and self‐tuning weighted measurement fusion Kalman filters and their asymptotic global optimality , 2010 .

[42]  Jorma Rissanen Optimal Estimation , 2011, ALT.

[43]  Chuang Li,et al.  Multi-model information fusion Kalman filtering and white noise deconvolution , 2010, Inf. Fusion.

[44]  Hongsheng Xi,et al.  The guaranteed estimation performance filter for discrete-time descriptor systems with uncertain noise , 1997, Int. J. Syst. Sci..

[45]  Minsuk Kwak,et al.  A Multiperiod Equilibrium Pricing Model , 2012, J. Appl. Math..

[46]  Shu-Li Sun Multi-sensor information fusion white noise filter weighted by scalars based on Kalman predictor , 2004, Autom..