The transcriptional activator ClrB is crucial for the degradation of soybean hulls and guar gum in Aspergillus niger.

[1]  Diane Bauer,et al.  Unraveling the regulation of sugar beet pulp utilization in the industrially relevant fungus Aspergillus niger , 2022, iScience.

[2]  R. D. de Vries,et al.  Blocking utilization of major plant biomass polysaccharides leads Aspergillus niger towards utilization of minor components , 2021, Microbial biotechnology.

[3]  A. Matsushika,et al.  The Transcription Factor Gene tclB2 Regulates Mannanolytic Enzyme Production in the Fungus Talaromyces cellulolyticus , 2021, Applied Biochemistry and Biotechnology.

[4]  Chaoguang Tian,et al.  Identification and Characterization of a Cellodextrin Transporter in Aspergillus niger , 2020, Frontiers in Microbiology.

[5]  Sabrina Beier,et al.  CLR1 and CLR2 are light dependent regulators of xylanase and pectinase genes in Trichoderma reesei. , 2019, Fungal genetics and biology : FG & B.

[6]  Y. Qu,et al.  Deletion of the middle region of the transcription factor ClrB in Penicillium oxalicum enables cellulase production in the presence of glucose , 2019, The Journal of Biological Chemistry.

[7]  B. Simmons,et al.  Succession of physiological stages hallmarks the transcriptomic response of the fungus Aspergillus niger to lignocellulose , 2019, bioRxiv.

[8]  R. D. de Vries,et al.  The presence of trace components significantly broadens the molecular response of Aspergillus niger to guar gum. , 2019, New biotechnology.

[9]  Chaoguang Tian,et al.  Crosstalk of Cellulose and Mannan Perception Pathways Leads to Inhibition of Cellulase Production in Several Filamentous Fungi , 2019, mBio.

[10]  R. D. de Vries,et al.  In Silico Analysis of Putative Sugar Transporter Genes in Aspergillus niger Using Phylogeny and Comparative Transcriptomics , 2018, Front. Microbiol..

[11]  J. Visser,et al.  Combinatorial control of gene expression in Aspergillus niger grown on sugar beet pectin , 2017, Scientific Reports.

[12]  R. D. de Vries,et al.  Regulators of plant biomass degradation in ascomycetous fungi , 2017, Biotechnology for Biofuels.

[13]  James A. Eddy,et al.  Network reconstruction and systems analysis of plant cell wall deconstruction by Neurospora crassa , 2017, bioRxiv.

[14]  Tetsuo Kobayashi,et al.  Conservation and diversity of the regulators of cellulolytic enzyme genes in Ascomycete fungi , 2017, Current Genetics.

[15]  M. Kimura,et al.  McmA‐dependent and ‐independent regulatory systems governing expression of ClrB‐regulated cellulase and hemicellulase genes in Aspergillus nidulans , 2016, Molecular microbiology.

[16]  M. Z. Siddiqui,et al.  Guar gum as a promising starting material for diverse applications: A review. , 2016, International journal of biological macromolecules.

[17]  J. Visser,et al.  The transcriptional activator GaaR of Aspergillus niger is required for release and utilization of d‐galacturonic acid from pectin , 2016, FEBS letters.

[18]  D. Archer,et al.  The roles of the zinc finger transcription factors XlnR, ClrA and ClrB in the breakdown of lignocellulose by Aspergillus niger , 2016, AMB Express.

[19]  J. P. Craig,et al.  Direct Target Network of the Neurospora crassa Plant Cell Wall Deconstruction Regulators CLR-1, CLR-2, and XLR-1 , 2015, mBio.

[20]  Xu Fang,et al.  Synergistic and Dose-Controlled Regulation of Cellulase Gene Expression in Penicillium oxalicum , 2015, PLoS genetics.

[21]  B. Pletschke,et al.  β-mannanase (Man26A) and α-galactosidase (Aga27A) synergism - a key factor for the hydrolysis of galactomannan substrates. , 2015, Enzyme and microbial technology.

[22]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[23]  B. S. Khatkar,et al.  Guar gum: processing, properties and food applications—A Review , 2014, Journal of Food Science and Technology.

[24]  Mikko Arvas,et al.  Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production , 2014, Biotechnology for Biofuels.

[25]  Pedro M. Coutinho,et al.  The carbohydrate-active enzymes database (CAZy) in 2013 , 2013, Nucleic Acids Res..

[26]  Yi Xiong,et al.  Analysis of a conserved cellulase transcriptional regulator reveals inducer-independent production of cellulolytic enzymes in Neurospora crassa , 2013, MicrobiologyOpen.

[27]  M. Ogawa,et al.  ManR, a Transcriptional Regulator of the β-Mannan Utilization System, Controls the Cellulose Utilization System in Aspergillus oryzae , 2013, Bioscience, biotechnology, and biochemistry.

[28]  M. Ogawa,et al.  ManR, a novel Zn(II)2Cys6 transcriptional activator, controls the β-mannan utilization system in Aspergillus oryzae. , 2012, Fungal genetics and biology : FG & B.

[29]  J. P. Craig,et al.  Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi , 2012, Proceedings of the National Academy of Sciences.

[30]  A. Nijssen,et al.  Analysis of regulation of pentose utilisation in Aspergillus niger reveals evolutionary adaptations in Eurotiales , 2011, Studies in mycology.

[31]  Jacques van Helden,et al.  RSAT: regulatory sequence analysis tools , 2008, Nucleic Acids Res..

[32]  C. Stull,et al.  Glycemic Index of Ten Common Horse Feeds , 2007 .

[33]  Vera Meyer,et al.  Highly efficient gene targeting in the Aspergillus niger kusA mutant. , 2007, Journal of biotechnology.

[34]  C. Grieshop,et al.  Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: A review , 2005 .

[35]  Ronald P. de Vries,et al.  A New Black Aspergillus Species, A. vadensis, Is a Promising Host for Homologous and Heterologous Protein Production , 2004, Applied and Environmental Microbiology.

[36]  P. V. D. van de Vondervoort,et al.  EglC, a New Endoglucanase from Aspergillus niger with Major Activity towards Xyloglucan , 2002, Applied and Environmental Microbiology.

[37]  J. Visser,et al.  Aspergillus Enzymes Involved in Degradation of Plant Cell Wall Polysaccharides , 2001, Microbiology and Molecular Biology Reviews.

[38]  J. Visser,et al.  Differential Expression of Three α-Galactosidase Genes and a Single β-Galactosidase Gene from Aspergillus niger , 1999, Applied and Environmental Microbiology.

[39]  Ronald P. de Vries,et al.  The Transcriptional Activator XlnR Regulates Both Xylanolytic and Endoglucanase Gene Expression inAspergillus niger , 1998, Applied and Environmental Microbiology.

[40]  J. Visser,et al.  Isolation and analysis of xlnR, encoding a transcriptional activator co‐ordinating xylanolytic expression in Aspergillus niger , 1998, Molecular microbiology.

[41]  R. Whistler,et al.  Galactomannan from Soy Bean Hulls1,2 , 1957 .

[42]  R. P. Vries,et al.  The Current Biotechnological Status and Potential of Plant and Algal Biomass Degrading/Modifying Enzymes from Ascomycete Fungi , 2020 .

[43]  Charles Elkan,et al.  Fitting a Mixture Model By Expectation Maximization To Discover Motifs In Biopolymer , 1994, ISMB.

[44]  I. Morrison,et al.  Polysaccharides of soy-beans. Part II. Fractionation of hull cell-wall polysaccharides and the structure of a xylan , 1966 .