Hyperspectral Data Processing: Algorithm Design and Analysis

Hyperspectral Data Processing: Algorithm Design and Analysis is a culmination of the research conducted in the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County. Specifically, it treats hyperspectral image processing and hyperspectral signal processing as separate subjects in two different categories. Most materials covered in this book can be used in conjunction with the author’s first book, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, without much overlap.

[1]  Chein-I Chang,et al.  A computer-aided detection and classification method for concealed targets in hyperspectral imagery , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[2]  V. P. Pauca,et al.  Nonnegative matrix factorization for spectral data analysis , 2006 .

[3]  Qian Du,et al.  Noise subspace projection approaches to determination of intrinsic dimensionality of hyperspectral imagery , 1999, Remote Sensing.

[4]  Michael W. Marcellin,et al.  JPEG2000 - image compression fundamentals, standards and practice , 2013, The Kluwer international series in engineering and computer science.

[5]  D. C. Heinz,et al.  Fully constrained least-squares based linear unmixing [hyperspectral image classification] , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[6]  Chein-I Chang,et al.  FPGA design for constrained energy minimization , 2004, SPIE Optics East.

[7]  Michael R. Descour,et al.  Algorithms for Multispectral, Hyperspectral and Ultraspectral Imagery , 2000 .

[8]  Hamid Soltanian-Zadeh,et al.  Optimal linear transformation for MRI feature extraction , 1996, IEEE Trans. Medical Imaging.

[9]  Chein-I. Chang,et al.  An improved N-FINDR algorithm in implementation , 2005 .

[10]  James Theiler,et al.  Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[11]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[12]  Heesung Kwon,et al.  Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Lorenzo Bruzzone,et al.  Kernel methods for remote sensing data analysis , 2009 .

[14]  H. Akaike A new look at the statistical model identification , 1974 .

[15]  Erik Blasch,et al.  Comparison of bootstrap and prior-probability synthetic data balancing methods for SAR target recognition , 1999, Defense, Security, and Sensing.

[16]  Marco Diani,et al.  Hyperspectral Signal Subspace Identification in the Presence of Rare Signal Components , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[17]  emontmej,et al.  High Performance Computing , 2003, Lecture Notes in Computer Science.

[18]  Maurice D. Craig,et al.  Minimum-volume transforms for remotely sensed data , 1994, IEEE Trans. Geosci. Remote. Sens..

[19]  C. J. Robinove,et al.  Computation with physical values from Landsat digital data , 1982 .

[20]  Paul E. Johnson,et al.  Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site , 1986 .

[21]  R. Bernstein,et al.  Gaussian Maximum Likelihood and Contextual Classification Algorithms for Multicrop Classification Experiments Using Thematic Mapper and Multispectral Scanner Sensor Data , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[22]  David A. Landgrebe,et al.  Feature Extraction Based on Decision Boundaries , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  T. Moon,et al.  Mathematical Methods and Algorithms for Signal Processing , 1999 .

[24]  Arto Kaarna,et al.  Compression of multispectral AVIRIS images , 2002, SPIE Defense + Commercial Sensing.

[25]  Joseph W. Boardman,et al.  Inversion of high spectral resolution data , 1990, Other Conferences.

[26]  Mark Andrews,et al.  On the Convergence of N-FINDR and Related Algorithms: To Iterate or Not to Iterate? , 2011, IEEE Geoscience and Remote Sensing Letters.

[27]  Brian Curtiss,et al.  A method for manual endmember selection and spectral unmixing , 1996 .

[28]  Zixiang Xiong,et al.  Low bit-rate scalable video coding with 3-D set partitioning in hierarchical trees (3-D SPIHT) , 2000, IEEE Trans. Circuits Syst. Video Technol..

[29]  Chein-I Chang,et al.  Automatic spectral target recognition in hyperspectral imagery , 2003 .

[30]  I. Ginsberg,et al.  Unsupervised hyperspectral image analysis using independent component analysis , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[31]  Chein-I Chang,et al.  Variable-Number Variable-Band Selection for Feature Characterization in Hyperspectral Signatures , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[32]  James B. Farison,et al.  Spatially invariant image sequences , 1992, IEEE Trans. Image Process..

[33]  Stephen D. Stearns,et al.  Dimensionality reduction by optimal band selection for pixel classification of hyperspectral imagery , 1993, Optics & Photonics.

[34]  Lei Guo,et al.  Using a New Search Strategy to Improve the Performance of N-FINDR Algorithm for End-Member Determination , 2009, 2009 2nd International Congress on Image and Signal Processing.

[35]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[36]  Chein-I Chang,et al.  Spectral derivative feature coding for hyperspectral signature analysis , 2009, Pattern Recognit..

[37]  John B. Adams,et al.  Simple Models For Complex Natural Surfaces: A Strategy For The Hyperspectral Era Of Remote Sensing , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[38]  John A. Swets,et al.  Evaluation of diagnostic systems : methods from signal detection theory , 1982 .

[39]  Chein-I Chang,et al.  Multiple-Window Anomaly Detection for Hyperspectral Imagery , 2008, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[40]  Isidore Paul Akam Bita,et al.  On optimal transforms in lossy compression of multicomponent images with JPEG2000 , 2010, Signal Process..

[41]  Yukio Kosugi,et al.  ICA-aided mixed-pixel analysis of hyperspectral data in agricultural land , 2005, IEEE Geoscience and Remote Sensing Letters.

[42]  M. E. Winter Comparison of approaches for determining end-members in hyperspectral data , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[43]  Nicolas H. Younan,et al.  JPEG2000 coding strategies for hyperspectral data , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[44]  Chein-I Chang,et al.  Chemical vapor detection with a multispectral thermal imager , 1991 .

[45]  John R. Jensen,et al.  Introductory Digital Image Processing: A Remote Sensing Perspective , 1986 .

[46]  Hsien-Tsai Wu,et al.  Source number estimators using transformed Gerschgorin radii , 1995, IEEE Trans. Signal Process..

[47]  A.H. Haddad,et al.  Applied optimal estimation , 1976, Proceedings of the IEEE.

[48]  Peter Bajorski Does virtual dimensionality work in hyperspectral images? , 2009, Defense + Commercial Sensing.

[49]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[50]  Paul E. Johnson,et al.  A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures , 1983 .

[51]  Ming-Huwi Horng,et al.  Texture feature coding method for texture classification , 2003 .

[52]  Karen H. Haskell,et al.  An algorithm for linear least squares problems with equality and nonnegativity constraints , 1981, Math. Program..

[53]  Tim J. Patterson,et al.  Design of optimal transformations for multispectral change detection using projection pursuit , 1994, Defense, Security, and Sensing.

[54]  P.K Sahoo,et al.  A survey of thresholding techniques , 1988, Comput. Vis. Graph. Image Process..

[55]  José M. Bioucas-Dias,et al.  Estimation of signal subspace on hyperspectral data , 2005, SPIE Remote Sensing.

[56]  R. E. Roger Principal Components transform with simple, automatic noise adjustment , 1996 .

[57]  Marco Diani,et al.  A New Algorithm for Robust Estimation of the Signal Subspace in Hyperspectral Images in the Presence of Rare Signal Components , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[58]  Chein-I Chang,et al.  Linear spectral unmixing approaches to magnetic resonance image analysis , 2008, SPIE Defense + Commercial Sensing.

[59]  O. L. Frost,et al.  An algorithm for linearly constrained adaptive array processing , 1972 .

[60]  J. Settle,et al.  Linear mixing and the estimation of ground cover proportions , 1993 .

[61]  Chein-I Chang,et al.  Dynamic band selection for hyperspectral imagery , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[62]  D. Parker,et al.  Bayesian confidence intervals for ROC curves , 2005 .

[63]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[64]  Hamid Soltanian-Zadeh,et al.  Partial volume and distribution estimation from multispectral images using continuous representations , 2007, J. Electronic Imaging.

[65]  Chein-I Chang,et al.  Weighted least squares error approaches to abundance-constrained linear spectral mixture analysis , 2005 .

[66]  A. R. Harrison,et al.  Standardized principal components , 1985 .

[67]  Chein-I Chang,et al.  Automatic algorithms for endmember extraction , 2006, SPIE Optics + Photonics.

[68]  Xiaoli Yu,et al.  Comparative performance analysis of adaptive multispectral detectors , 1993, IEEE Trans. Signal Process..

[69]  T. Tu Unsupervised signature extraction and separation in hyperspectral images: a noise-adjusted fast independent component analysis approach , 2000 .

[70]  Isaac Gerg An evaluation of three endmember extraction algorithms: ATGP, ICA-EEA & VCA , 2010, WHISPERS.

[71]  Robert A. Schowengerdt,et al.  Remote sensing, models, and methods for image processing , 1997 .

[72]  J. B. Lee,et al.  Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform , 1990 .

[74]  Alfredo Huete,et al.  Separation of soil-plant spectral mixture by factor analysis , 1986 .

[75]  Chein-I Chang,et al.  Spectral/spatial hyperspectral image compression in conjunction with virtual dimensionality , 2005 .

[76]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[77]  Arvid Lundervold,et al.  Evaluation of automated brain MR image segmentation and volumetry methods , 2009, Human brain mapping.

[78]  Chein-I Chang,et al.  Dynamic dimensionality reduction for hyperspectral imagery , 2011, Defense + Commercial Sensing.

[79]  Wei Xiong,et al.  High-order statistics Harsanyi-Farrand-Chang method for estimation of virtual dimensionality , 2010, Optical Engineering + Applications.

[80]  Jorma Rissanen,et al.  Compression of Black-White Images with Arithmetic Coding , 1981, IEEE Trans. Commun..

[81]  D R Haynor,et al.  Partial volume tissue classification of multichannel magnetic resonance images-a mixel model. , 1991, IEEE transactions on medical imaging.

[82]  Chein-I. Chang Hyperspectral Imaging: Techniques for Spectral Detection and Classification , 2003 .

[83]  C.-C. Jay Kuo,et al.  A new initialization technique for generalized Lloyd iteration , 1994, IEEE Signal Processing Letters.

[84]  Jerry L. Prince,et al.  Adaptive fuzzy segmentation of magnetic resonance images , 1999, IEEE Transactions on Medical Imaging.

[85]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[86]  Steven C. Gustafson,et al.  Receiver operating characteristic and confidence error metrics for assessing the performance of automatic target recognition systems , 2005 .

[87]  John F. Arnold,et al.  Reliably estimating the noise in AVIRIS hyperspectral images , 1996 .

[88]  Sylvia S. Shen,et al.  Effects of hyperspectral compression on nonliteral exploitation , 1998, Optics & Photonics.

[89]  Heinz-Otto Peitgen,et al.  The Skull Stripping Problem in MRI Solved by a Single 3D Watershed Transform , 2000, MICCAI.

[90]  Robert E. Crippen,et al.  The dangers of underestimating the importance of data adjustments in band ratioing , 1988 .

[91]  Eric Allman,et al.  A metric of background candidate assessment for spectral target signature transforms , 2005, IEEE Geoscience and Remote Sensing Letters.

[92]  Evgueni A. Haroutunian,et al.  Information Theory and Statistics , 2011, International Encyclopedia of Statistical Science.

[93]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[94]  Johannes R. Sveinsson,et al.  Classification of hyperspectral data from urban areas based on extended morphological profiles , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[95]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..

[96]  Jerome M. Shapiro,et al.  Embedded image coding using zerotrees of wavelet coefficients , 1993, IEEE Trans. Signal Process..

[97]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..

[98]  Wei Xiong Estimation of effective spectral dimensionality for hyperspectral imagery , 2011 .

[99]  Andreas T. Ernst,et al.  ICE: a statistical approach to identifying endmembers in hyperspectral images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[100]  Chein-I. Chang,et al.  Discrimination measures for target classification , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[101]  Erik Blasch,et al.  Level 5: user refinement to aid the fusion process , 2003, SPIE Defense + Commercial Sensing.

[102]  Yimin Zhang,et al.  Submitted to Ieee Transactions on Signal Processing (revised) Array Processing for Nonstationary Interference Suppression in Ds/ss Communications Using Subspace Projection Techniques , 2022 .

[103]  J. G. McWhirter,et al.  A novel algorithm and architecture for adaptive digital beamforming , 1986 .

[104]  Erkki Oja,et al.  Blind Separation of Positive Sources by Globally Convergent Gradient Search , 2004, Neural Computation.

[105]  Ming-Huwi Horng,et al.  Texture Feature Coding Method for Classification of Liver Sonography , 1996, ECCV.

[106]  A. Chowdhury,et al.  Fast implementation of N-FINDR algorithm for endmember determination in hyperspectral imagery , 2007, SPIE Defense + Commercial Sensing.

[107]  Mark E. Pesses,et al.  A least-squares-filter vector hybrid approach to hyperspectral subpixel demixing , 1999, IEEE Trans. Geosci. Remote. Sens..

[108]  Ralph Bernstein,et al.  Gaussian Maximum Likelihood and Contextual Classification Algorithms for Multicrop Classification , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[109]  C. O'Connor An introduction to multivariate statistical analysis: 2nd edn. by T. W. Anderson. 675 pp. Wiley, New York (1984) , 1987 .

[110]  Antonio J. Plaza,et al.  A Quantitative and Comparative Analysis of Different Implementations of N-FINDR: A Fast Endmember Extraction Algorithm , 2009, IEEE Geoscience and Remote Sensing Letters.

[111]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[112]  E. J. Kelly An Adaptive Detection Algorithm , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[113]  Paul D. Gader,et al.  Sparsity Promoting Iterated Constrained Endmember Detection in Hyperspectral Imagery , 2007, IEEE Geoscience and Remote Sensing Letters.

[114]  Chein-I Chang,et al.  A Kalman filtering approach to multispectral image classification and detection of changes in signature abundance , 1999, IEEE Trans. Geosci. Remote. Sens..

[115]  N C Andreasen,et al.  Improving tissue classification in MRI: a three-dimensional multispectral discriminant analysis method with automated training class selection. , 1999, Journal of computer assisted tomography.

[116]  Jacques A. de Guise,et al.  A method for modeling noise in medical images , 2004, IEEE Transactions on Medical Imaging.

[117]  Yosio Edemir Shimabukuro,et al.  The least-squares mixing models to generate fraction images derived from remote sensing multispectral data , 1991, IEEE Trans. Geosci. Remote. Sens..

[118]  Piero Barone,et al.  Mathematical principles of basic magnetic resonance imaging in medicine , 1991, Signal Process..

[119]  Mehrdad Soumekh,et al.  Hyperspectral anomaly detection within the signal subspace , 2006, IEEE Geoscience and Remote Sensing Letters.

[120]  Daniel W. Wilson,et al.  Snapshot hyperspectral imaging in ophthalmology. , 2007, Journal of biomedical optics.

[121]  Ronald G. Resmini,et al.  Mineral mapping with HYperspectral Digital Imagery Collection Experiment (HYDICE) sensor data at Cuprite, Nevada, U.S.A. , 1997 .

[122]  Chong-Yung Chi,et al.  Hyperspectral unmixing from a convex analysis and optimization perspective , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[123]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.

[124]  James E. Fowler QccPack: an open-source software library for quantization, compression, and coding , 2000, Proceedings DCC 2000. Data Compression Conference.

[125]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[126]  J. W. Boardman,et al.  Quantitative Determination Of Imaging Spectrometer Specifications Based On Spectral Mixing Models , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[127]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[128]  Chein-I Chang,et al.  Unsupervised hyperspectral target analysis , 2008, Optical Engineering + Applications.

[129]  Antonio J. Plaza,et al.  Impact of Initialization on Design of Endmember Extraction Algorithms , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[130]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[131]  Jeff J. Settle,et al.  On the relationship between spectral unmixing and subspace projection , 1996, IEEE Trans. Geosci. Remote. Sens..

[132]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[133]  Amit Banerjee,et al.  A Neyman-Pearson approach to estimating the number of endmembers , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[134]  Chein-I Chang,et al.  Further results on relationship between spectral unmixing and subspace projection , 1998, IEEE Trans. Geosci. Remote. Sens..

[135]  J. Boardman,et al.  Mapping target signatures via partial unmixing of AVIRIS data: in Summaries , 1995 .

[136]  Chein-I Chang,et al.  A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks , 2001, IEEE Trans. Geosci. Remote. Sens..

[137]  Anthony M. Filippi,et al.  Support Vector Machine-Based Endmember Extraction , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[138]  Terrence J. Sejnowski,et al.  Blind source separation of more sources than mixtures using overcomplete representations , 1999, IEEE Signal Processing Letters.

[139]  Chein-I Chang,et al.  Discrimination and identification for subpixel targets in hyperspectral imagery , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[140]  Heesung Kwon,et al.  Adaptive anomaly detection using subspace separation for hyperspectral imagery , 2003 .

[141]  S. Katagiri,et al.  Discriminative Learning for Minimum Error Classification , 2009 .

[142]  Mohammed Yakoob Siyal,et al.  An intelligent modified fuzzy c-means based algorithm for bias estimation and segmentation of brain MRI , 2005, Pattern Recognit. Lett..

[143]  Mark A. Girolami,et al.  Self-Organising Neural Networks: Independent Component Analysis and Blind Source Separation , 1999 .

[144]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[145]  Haleh Safavi,et al.  Hyperspectral data dimensionality reduction and applications , 2010 .

[146]  Chein-I Chang,et al.  Real-time N-finder processing algorithms for hyperspectral imagery , 2010, Journal of Real-Time Image Processing.

[147]  Jing Wang,et al.  Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[148]  Chein-I Chang,et al.  Improved Process for Use of a Simplex Growing Algorithm for Endmember Extraction , 2009, IEEE Geoscience and Remote Sensing Letters.

[149]  Louis L. Scharf,et al.  Matched subspace detectors , 1994, IEEE Trans. Signal Process..

[150]  C W Yang,et al.  Orthogonal subspace projection-based approaches to classification of MR image sequences. , 2001, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[151]  Jack E. Volder The CORDIC Trigonometric Computing Technique , 1959, IRE Trans. Electron. Comput..

[152]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[153]  Enrico Magli,et al.  Progressive 3-D coding of hyperspectral images based on JPEG 2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[154]  J. Boardman,et al.  Geometric mixture analysis of imaging spectrometry data , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[155]  Dean A. Scribner,et al.  A family of spectral target signature transforms: relationship to the past, new transforms, and sensitivity tests , 2004, IEEE Geoscience and Remote Sensing Letters.

[156]  Chein-I Chang,et al.  Relationship among orthogonal subspace projection, constrained energy minimization and RX-algorithm , 2002, SPIE Defense + Commercial Sensing.

[157]  Bea Thai,et al.  Invariant subpixel material detection in hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[158]  Qian Du,et al.  A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[159]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[160]  Benoit Scherrer,et al.  Distributed Local MRF Models for Tissue and Structure Brain Segmentation , 2009, IEEE Transactions on Medical Imaging.

[161]  Shun-ichi Amari,et al.  Network information criterion-determining the number of hidden units for an artificial neural network model , 1994, IEEE Trans. Neural Networks.

[162]  Shen-En Qian,et al.  Hyperspectral data compression using a fast vector quantization algorithm , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[163]  A. Mazer,et al.  Image processing software for imaging spectrometry data analysis , 1988 .

[164]  Xiaoli Yu,et al.  Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution , 1990, IEEE Trans. Acoust. Speech Signal Process..

[165]  Erik Blasch,et al.  Physiologically motivated computational visual target recognition beta selection , 2000, SPIE Defense + Commercial Sensing.

[166]  John A. Antoniades,et al.  Use of filter vectors in hyperspectral data analysis , 1995, Optics & Photonics.

[167]  Erik Blasch,et al.  User fusion to constrain SAR targeting for TSTs , 2003, SPIE Defense + Commercial Sensing.

[168]  B.D. Van Veen,et al.  Beamforming: a versatile approach to spatial filtering , 1988, IEEE ASSP Magazine.

[169]  Terry A. Welch,et al.  A Technique for High-Performance Data Compression , 1984, Computer.

[170]  Chein-I Chang,et al.  Real-Time Simplex Growing Algorithms for Hyperspectral Endmember Extraction , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[171]  Dominique Lavenier,et al.  Using blocks of skewers for faster computation of pixel purity index , 2000, SPIE Optics + Photonics.

[172]  Chein-I Chang,et al.  A fast two-stage classification method for high-dimensional remote sensing data , 1998, IEEE Trans. Geosci. Remote. Sens..

[173]  Chein-I Chang,et al.  Block truncation signature coding for hyperspectral analysis , 2008, Optical Engineering + Applications.

[174]  David A. Landgrebe,et al.  Hyperspectral data analysis and supervised feature reduction via projection pursuit , 1999, IEEE Trans. Geosci. Remote. Sens..

[175]  Paul E. Johnson,et al.  Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis , 1985 .

[176]  John F. Mustard,et al.  Abundance and distribution of ultramafic microbreccia in Moses Rock dike - Quantitative application of mapping spectroscopy , 1987 .

[177]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[178]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[179]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[180]  Chein-I Chang,et al.  Characterization of anomaly detection in hyperspectral imagery , 2006 .

[181]  Chein-I Chang,et al.  Unsupervised image classification for remotely sensed imagery , 2004, SPIE Optics + Photonics.

[182]  Alfonso Fernández-Manso,et al.  Spectral unmixing , 2012 .

[183]  Hong Yan,et al.  An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation , 2003, IEEE Transactions on Medical Imaging.

[184]  P. Santago,et al.  Quantification of MR brain images by mixture density and partial volume modeling , 1993, IEEE Trans. Medical Imaging.

[185]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[186]  Gary A. Shaw,et al.  Hyperspectral subpixel target detection using the linear mixing model , 2001, IEEE Trans. Geosci. Remote. Sens..

[187]  Jean-François Cardoso,et al.  Equivariant adaptive source separation , 1996, IEEE Trans. Signal Process..

[188]  Edmund R. Malinowski,et al.  Theory of error in factor analysis , 1977 .

[189]  John Best Magnetic resonance — the image! , 1988, The Medical journal of Australia.

[190]  Derek Rogge,et al.  Integration of spatial–spectral information for the improved extraction of endmembers , 2007 .

[191]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[192]  Robert F. Cromp,et al.  Analyzing hyperspectral data with independent component analysis , 1998, Other Conferences.

[193]  Konstantinos Kalpakis,et al.  Fast Algorithms to Implement N-FINDR for Hyperspectral Endmember Extraction , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[194]  Chein-I Chang,et al.  Adaptive causal anomaly detection for hyperspectral imagery , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[195]  E. M. Winter,et al.  Anomaly detection from hyperspectral imagery , 2002, IEEE Signal Process. Mag..

[196]  Jing Wang,et al.  Applications of Independent Component Analysis in Endmember Extraction and Abundance Quantification for Hyperspectral Imagery , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[197]  James O. Jensen,et al.  Multistage pulse code modulation for progressive spectral signature coding , 2004, SPIE Optics East.

[198]  David S. Taubman,et al.  High performance scalable image compression with EBCOT , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[199]  Optimum Band Selection for Supervised Classification of Multispectral Data , 2007 .

[200]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[201]  Clayton Chi-Chang Chen,et al.  Independent Component Analysis for Magnetic Resonance Image Analysis , 2008, EURASIP J. Adv. Signal Process..

[202]  D. Roberts,et al.  Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE , 2003 .

[203]  Gregory Asner,et al.  Endmember bundles: a new approach to incorporating endmember variability into spectral mixture analysis , 2000, IEEE Trans. Geosci. Remote. Sens..

[204]  Chein-I Chang,et al.  Anomaly detection and classification for hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[205]  Chein-I Chang,et al.  A generalized orthogonal subspace projection approach to unsupervised multispectral image classification , 2000, IEEE Trans. Geosci. Remote. Sens..

[206]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[207]  Louis L. Scharf,et al.  Signal processing applications of oblique projection operators , 1994, IEEE Trans. Signal Process..

[208]  Antonio J. Plaza,et al.  A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[209]  G. A Theory for Multiresolution Signal Decomposition : The Wavelet Representation , 2004 .

[210]  Chein-I Chang,et al.  Fisher's linear spectral mixture analysis , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[211]  Hairong Qi,et al.  Endmember Extraction From Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[212]  Chein-I Chang,et al.  Field Programmable Gate Arrays (FPGA) for Pixel Purity Index Using Blocks of Skewers for Endmember Extraction in Hyperspectral Imagery , 2008, Int. J. High Perform. Comput. Appl..

[213]  R. E. Roger A faster way to compute the noise-adjusted principal components transform matrix , 1994, IEEE Trans. Geosci. Remote. Sens..

[214]  Limin Wang,et al.  Progressive image transmission using vector quantization on images in pyramid form , 1989, IEEE Trans. Commun..

[215]  Wei Xiong,et al.  Convex cone-based endmember extraction for hyperspectral imagery , 2010, Optical Engineering + Applications.

[216]  Corinne Mailhes,et al.  Quality criteria benchmark for hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[217]  David A. Landgrebe,et al.  The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon , 1994, IEEE Trans. Geosci. Remote. Sens..

[218]  W. Farrand Mapping the distribution of mine tailings in the Coeur d'Alene River Valley, Idaho, through the use of a constrained energy minimization technique , 1997 .

[219]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[220]  Rama Chellappa,et al.  Kernel fully constrained least squares abundance estimates , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[221]  Heesung Kwon,et al.  Kernel orthogonal subspace projection for hyperspectral signal classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[222]  Ian H. Witten,et al.  Arithmetic coding for data compression , 1987, CACM.

[223]  J. Boardman Inversion Of Imaging Spectrometry Data Using Singular Value Decomposition , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[224]  Shun-ichi Amari,et al.  Natural Gradient Learning for Over- and Under-Complete Bases in ICA , 1999, Neural Computation.

[225]  Chein-I Chang,et al.  Unsupervised constrained linear Fisher's discriminant analysis for hyperspectral image classification , 2004, SPIE Optics + Photonics.

[226]  Mingyi He,et al.  Band selection based on feature weighting for classification of hyperspectral data , 2005, IEEE Geoscience and Remote Sensing Letters.

[227]  Shen-En Qian,et al.  Fast three‐dimensional data compression of hyperspectral imagery using vector quantization with spectral‐feature‐based binary coding , 1996 .

[228]  D. Roberts,et al.  A new approach to quantifying abundances of materials in multispectral images , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[229]  I. Reed,et al.  Rapid Convergence Rate in Adaptive Arrays , 1974, IEEE Transactions on Aerospace and Electronic Systems.

[230]  Antonio J. Plaza,et al.  Parallel implementation of endmember extraction algorithms from hyperspectral data , 2006, IEEE Geoscience and Remote Sensing Letters.

[231]  David Malah,et al.  Rank Estimation and Redundancy Reduction of High-Dimensional Noisy Signals With Preservation of Rare Vectors , 2007, IEEE Transactions on Signal Processing.

[232]  William A. Pearlman,et al.  Three-Dimensional Wavelet-Based Compression of Hyperspectral Images , 2006, Hyperspectral Data Compression.

[233]  Chein-I Chang,et al.  Pixel purity index-based algorithms for endmember extraction from hyperspectral imagery , 2006 .

[234]  Alan D. Stocker,et al.  Real-time hyperspectral detection and cuing , 2000 .

[235]  Chong-Yung Chi,et al.  A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing , 2009, IEEE Trans. Signal Process..

[236]  John A. Richards,et al.  Efficient maximum likelihood classification for imaging spectrometer data sets , 1994, IEEE Trans. Geosci. Remote. Sens..

[237]  Chein-I Chang,et al.  Unsupervised Kalman filter approach to signature estimation for remotely sensed imagery , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[238]  Michel Barret,et al.  ICA based algorithms for computing optimal 1-D linear block transforms in variable high-rate source coding , 2008, Signal Process..

[239]  Chein-I Chang,et al.  Target signature-constrained mixed pixel classification for hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[240]  Aly A. Farag,et al.  A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data , 2002, IEEE Transactions on Medical Imaging.

[241]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..

[242]  Susan L. Ustin,et al.  Investigation of leaf biochemistry by hierarchical foreground/background analysis , 1998, IEEE Trans. Geosci. Remote. Sens..

[243]  Mark Englin Wong Partial volume estimation of magnetic resonance image using linear spectral mixing analysis , 2011 .

[244]  Erkki Oja,et al.  Principal components, minor components, and linear neural networks , 1992, Neural Networks.

[245]  Chein-I Chang,et al.  Kernel-Based Linear Spectral Mixture Analysis , 2012, IEEE Geoscience and Remote Sensing Letters.

[246]  E. Ashton,et al.  Algorithms for the Detection of Su b-Pixel Targets in Multispectral Imagery , 1998 .

[247]  Chein-I Chang,et al.  Estimation of number of spectrally distinct signal sources in hyperspectral imagery , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[248]  José M. Bioucas-Dias,et al.  Hyperspectral Subspace Identification , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[249]  Mohamed-Jalal Fadili,et al.  Brain tissue classification of magnetic resonance images using partial volume modeling , 2000, IEEE Transactions on Medical Imaging.

[250]  Michael E. Winter A proof of the N-FINDR algorithm for the automated detection of endmembers in a hyperspectral image , 2004, SPIE Defense + Commercial Sensing.

[251]  Amandine Robin,et al.  Using Random Matrix Theory to determine the number of endmembers in a hyperspectral image , 2010, 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[252]  Fabio Maselli,et al.  Selection of optimum bands from TM scenes through mutual information analysis , 1993 .

[253]  Adam Krzyżak Neural networks for optimization and signal processing: A. Cichocki and R. Unbehauen. J. Wiley & Sons, 1993. ISBN 0-471-93010-5. 526 pp , 1994 .

[254]  Jorma Rissanen,et al.  Generalized Kraft Inequality and Arithmetic Coding , 1976, IBM J. Res. Dev..

[255]  Koenraad Van Leemput,et al.  A unifying framework for partial volume segmentation of brain MR images , 2003, IEEE Transactions on Medical Imaging.

[256]  Qian Du,et al.  Automatic target recognition for hyperspectral imagery using high-order statistics , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[257]  Limin Wang,et al.  Progressive image transmission by transform coefficient residual error quantization , 1988, IEEE Trans. Commun..

[258]  Margaret E. Gardner,et al.  Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models , 1998 .

[259]  David A. Landgrebe,et al.  Hierarchical classifier design in high-dimensional numerous class cases , 1991, IEEE Trans. Geosci. Remote. Sens..

[260]  R. Singer,et al.  Mars - Large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance , 1979 .

[261]  M. R. Leadbetter,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[262]  Mingkai Hsueh Reconfigurable computing for algorithms in hyperspectral image processing , 2007 .

[263]  Xiaohui Zhang,et al.  New independent component analysis method using higher order statistics with application to remote sensing images , 2002 .

[264]  Chein-I Chang,et al.  Target-constrained interference-minimized approach to subpixel target detection for hyperspectral images , 2000 .

[265]  Jiang Li,et al.  Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction , 2002, IEEE Trans. Geosci. Remote. Sens..

[266]  Laveen N. Kanal,et al.  Classification, Pattern Recognition and Reduction of Dimensionality , 1982, Handbook of Statistics.

[267]  Chein-I Chang,et al.  Spectral Feature Probabilistic Coding for Hyperspectral Signatures , 2010, IEEE Sensors Journal.

[268]  Lorenzo Bruzzone,et al.  A new search algorithm for feature selection in hyperspectral remote sensing images , 2001, IEEE Trans. Geosci. Remote. Sens..

[269]  Su Wang,et al.  Spectral abundance fraction estimation of materials using Kalman filters , 2004, SPIE Optics East.

[270]  Chein-I Chang,et al.  Progressive coding for hyperspectral signature characterization , 2006 .

[271]  Eng Lin Wong Linear spectral unmixing approaches to magnetic resonance image classification , 2008 .

[272]  Chein-I Chang,et al.  A posteriori least squares orthogonal subspace projection approach to desired signature extraction and detection , 1997, IEEE Trans. Geosci. Remote. Sens..

[273]  Shang-Liang Chen,et al.  Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.

[274]  J. Boardman,et al.  Leveraging the High Dimensionality of AVIRIS Data for improved Sub-Pixel Target i Unmixing and Rejection of False Positives : Mixture Tuned Matched Filtering , 1998 .

[275]  Joel Max,et al.  Quantizing for minimum distortion , 1960, IRE Trans. Inf. Theory.

[276]  Qian Du,et al.  A signal-decomposed and interference-annihilated approach to hyperspectral target detection , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[277]  Qian Du,et al.  A linear constrained distance-based discriminant analysis for hyperspectral image classification , 2001, Pattern Recognit..

[278]  Samir Palnitkar,et al.  Verilog HDL: a guide to digital design and synthesis , 1996 .

[279]  Louis L. Scharf,et al.  The CFAR adaptive subspace detector is a scale-invariant GLRT , 1999, IEEE Trans. Signal Process..

[280]  John B. Adams,et al.  SPECTRAL MIXTURE ANALYSIS - NEW STRATEGIES FOR THE ANALYSIS OF MULTISPECTRAL DATA , 1994 .

[281]  Chein-I Chang,et al.  Progressive band selection for satellite hyperspectral data compression and transmission , 2010 .

[282]  Enrico Magli,et al.  Transform Coding Techniques for Lossy Hyperspectral Data Compression , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[283]  K. Tzou Progressive Image Transmission: A Review And Comparison Of Techniques , 1987 .

[284]  Jing Wang,et al.  A novel approach for spectral unmixing, classification, and concentration estimation of chemical and biological agents , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[285]  Mario Winter,et al.  N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data , 1999, Optics & Photonics.

[286]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[287]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[288]  S. Klinke,et al.  Exploratory Projection Pursuit , 1995 .

[289]  Michael Rabadi,et al.  Kernel Methods for Machine Learning , 2015 .

[290]  J. Boardman Automating spectral unmixing of AVIRIS data using convex geometry concepts , 1993 .