Cellular Automata Transforms

Consider a three-site neighborhood, dual-state, one-dimensional CA. The state of each cell is given by the Boolean variable a. When the state is on, a=1. Otherwise it is off and a=0. The quantity a it represents the state (Boolean) of the i-th cell, at discrete time t, whose two neighbors are in the following states: a i-1t,ai+1t . In general, we seek a rule that will be used to synchronously calculate the state a it+1 from the state of the cells in the neighborhood at the t-th time level (Figure 2.1).

[1]  Pierre Lallemand,et al.  Lattice Gas Hydrodynamics in Two and Three Dimensions , 1987, Complex Syst..

[2]  H. Gutowitz A hierarchical classification of cellular automata , 1991 .

[3]  Hyman Hartman,et al.  Reversible cellular automata and chemical turbulence , 1990 .

[4]  F. Neri,et al.  Cellular automata and nonlinear dynamical models , 1987 .

[5]  G. A. Kohring An efficient hydrodynamic cellular automata for simulating fluids with large viscosities , 1992 .

[6]  Tommaso Toffoli,et al.  Cellular Automata Machines , 1987, Complex Syst..

[7]  B Chopard,et al.  Cellular automata approach to non-equilibrium phase transitions in a surface reaction model: static and dynamic properties , 1988 .

[8]  Michael F. Barnsley,et al.  Fractals everywhere, 2nd Edition , 1993 .

[9]  Dab,et al.  Lattice-gas automata for coupled reaction-diffusion equations. , 1991, Physical review letters.

[10]  A. Canning,et al.  A comparison of spin exchange and cellular automaton models for diffusion-controlled reactions , 1990 .

[11]  Olu Lafe Data compression and encryption using cellular automata transforms , 1997 .

[12]  Pierre Lallemand,et al.  Numerical Simulations of Hydrodynamics with Lattice Gas Automata in Two Dimensions , 1987, Complex Syst..

[13]  G. Kohring The cellular automata approach to simulating fluid flows in porous media , 1992 .

[14]  S. P. Hastings,et al.  Pattern formation and periodic structures in systems modeled by reaction-diffusion equations , 1978 .

[15]  D. G. Green,et al.  Simulating spatial patterns in forest ecosystems , 1985 .

[16]  A. Despain,et al.  Prospects for a lattice gas computer , 1990 .

[17]  Turing Occam,et al.  How Much Can You Get for How Little? (a Conceptual Introduction to Cellular Automata) , 1994 .

[18]  M. Creutz Deterministic Ising dynamics , 1986 .

[19]  M. Ernst,et al.  Thermal cellular automata fluids , 1992 .

[20]  염흥렬,et al.  [서평]「Applied Cryptography」 , 1997 .

[21]  Calculations of drag coefficients via hydrodynamic cellular automata , 1992 .

[22]  Stéphane Zaleski,et al.  Modeling water infiltration in unsaturated porous media by interacting lattice gas‐cellular automata , 1994 .

[23]  Nigel M. Allinson,et al.  The design and implementation of a massively-parallel fuzzy architecture , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[24]  Tommaso Toffoli,et al.  Cellular Automata as an Alternative to (Rather than an Approximation of) Differential Equations in M , 1984 .

[25]  N. Packard,et al.  Extracting cellular automaton rules directly from experimental data , 1991 .

[26]  S. Hastings,et al.  Spatial Patterns for Discrete Models of Diffusion in Excitable Media , 1978 .

[27]  R. Connelly Winning Ways for Your Mathematical Plays, Volumes I & II By Elwyn R. Berlekamp, John H. Conway , 1986 .

[28]  W. Daniel Hillis,et al.  The connection machine: A computer architecture based on cellular automata , 1984 .

[29]  A lattice-gas model for three immiscible fluids , 1991 .

[30]  K. G. Eggert,et al.  Lattice gas automata for flow through porous media , 1991 .

[31]  P. Garcia-Ybarra,et al.  Unsteady potential flows computation by cellular automata: The premixed flame instability , 1994 .

[32]  Jonathan Silvertown,et al.  Cellular Automaton Models of Interspecific Competition for Space--The Effect of Pattern on Process , 1992 .

[33]  Tommaso Toffoli,et al.  CAM: A high-performance cellular-automaton machine , 1984 .

[34]  Christopher G. Langton,et al.  Studying artificial life with cellular automata , 1986 .

[35]  Daniel H. Rothman,et al.  Cellular-automaton Fluids: A Model For Flow In Porous Media , 1987 .

[36]  Daniel H. Rothman,et al.  A Galilean-invariant immiscible lattice gas , 1991 .

[37]  Uriel Frisch,et al.  Relation between the lattice Boltzmann equation and the Navier-Stokes equations , 1991 .

[38]  P. Hogeweg Cellular automata as a paradigm for ecological modeling , 1988 .

[39]  Leesa Brieger,et al.  A stochastic cellular automaton simulation of the non-linear diffusion equation , 1991 .

[40]  Howard Gutowitz,et al.  Cryptography with Dynamical Systems , 1993 .

[41]  Puhua Guan,et al.  Cellular Automaton Public-Key Cryptosystem , 1987, Complex Syst..

[42]  Curtis Greene,et al.  A Combinatorial Problem Arising in the Study of Reaction-Diffusion Equations , 1980, SIAM J. Matrix Anal. Appl..

[43]  P. Grassberger New mechanism for deterministic diffusion , 1983 .

[44]  Kenneth C. Pohlmann,et al.  Principles of Digital Audio , 1986 .