Thy-1 functions as a signal transduction molecule in T lymphocytes and transfected B lymphocytes

[1]  B. Seligmann,et al.  Induction of T cell activation by monoclonal anti-Thy-1 antibodies. , 1986, Journal of immunology.

[2]  R. Germain,et al.  Functional expression of the murine Thy-1.2 gene in transfected human T cells , 1986, The Journal of experimental medicine.

[3]  A. Barclay,et al.  A glycophospholipid tail at the carboxyl terminus of the Thy-1 glycoprotein of neurons and thymocytes. , 1985, Science.

[4]  P. Kincade,et al.  Phosphatidylinositol is the membrane-anchoring domain of the Thy-1 glycoprotein , 1985, Nature.

[5]  P. Goodfellow,et al.  The human Thy-1 gene: structure and chromosomal location. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[6]  E. Gelfand,et al.  Antigen-dependent increase in cytosolic free calcium in specific human T-lymphocyte clones , 1985, Nature.

[7]  D. Scott,et al.  Lymphoma models for B cell activation and tolerance. I. Conditions for the anti-mu-dependent stimulation of growth in NBL, a nude B cell lymphoma. , 1985, Journal of immunology.

[8]  J. Silver,et al.  A hydrophobic transmembrane segment at the carboxyl terminus of thy-1. , 1985, Science.

[9]  J. Silver,et al.  Structural organization of the rat thy-1 gene , 1985, Nature.

[10]  A. Weiss,et al.  The antigen receptor on a human T cell line initiates activation by increasing cytoplasmic free calcium. , 1985, Journal of immunology.

[11]  E. Reinherz,et al.  Activation of human thymocytes via the 50KD T11 sheep erythrocyte binding protein induces the expression of interleukin 2 receptors on both T3+ and T3- populations. , 1985, Journal of immunology.

[12]  E. Reinherz,et al.  Calcium dependency of antigen-specific (T3-Ti) and alternative (T11) pathways of human T-cell activation. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A. Weiss,et al.  Role of T3 surface molecules in human T-cell activation: T3-dependent activation results in an increase in cytoplasmic free calcium. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Arthur Weiss,et al.  The role of T3 surface molecules in the activation of human T cells: a two-stimulus requirement for IL 2 production reflects events occurring at a pre-translational level. , 1984, Journal of immunology.

[15]  K. Foon,et al.  A MONOCLONAL ANTIBODY RECOGNIZING HUMAN THY‐ 1: DISTRIBUTION ON HUMAN AND NON‐HUMAN PRIMATE HAEMATOPOIETIC CELLS , 1984, Journal of immunogenetics.

[16]  M. Berridge Inositol trisphosphate and diacylglycerol as second messengers. , 1984, The Biochemical journal.

[17]  R. Masland,et al.  Monoclonal antibody to Thy-1 enhances regeneration of processes by rat retinal ganglion cells in culture. , 1984, Science.

[18]  E. Reinherz,et al.  An alternative pathway of T-cell activation: A functional role for the 50 kd T11 sheep erythrocyte receptor protein , 1984, Cell.

[19]  E. Shevach,et al.  T cell-activating properties of an anti-Thy-1 monoclonal antibody. Possible analogy to OKT3/Leu-4 , 1984, The Journal of experimental medicine.

[20]  K. A. Wall,et al.  Cloned T Lymphocytes and Monoclonal Antibodies as Probes for Cell Surface Molecules Active in T Cell‐Mediated Cytolysis , 1982, Immunological reviews.

[21]  R Y Tsien,et al.  Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator , 1982, The Journal of cell biology.

[22]  E. Shevach,et al.  Production of autoreactive I region-restricted T cell hybridomas , 1982, The Journal of experimental medicine.

[23]  R Y Tsien,et al.  Anti-immunoglobulin, cytoplasmic free calcium, and capping in B lymphocytes , 1982, The Journal of cell biology.

[24]  W. Paul,et al.  I region-restricted antigen presentation by B cell–B lymphoma hybridomas , 1982, Nature.

[25]  J. Gagnon,et al.  Neuronal cell Thy-1 glycoprotein: homology with immunoglobulin. , 1982, Science.

[26]  R. Tsien,et al.  T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes , 1982, Nature.

[27]  T. Springer,et al.  A shared alloantigenic determinant on Ia antigens encoded by the I-A and I-E subregions: evidence for I region gene duplication. , 1981, Journal of immunology.

[28]  A. Boyd,et al.  The regulation of growth and differentiation of a murine B cell lymphoma. II. The inhibition of WEHI 231 by anti-immunoglobulin antibodies. , 1981, Journal of immunology.

[29]  M. Norcross,et al.  Mechanism of Thy-1-mediated T cell activation: roles of Fc receptors, T200, Ia, and H-2 glycoproteins in accessory cell function. , 1981, Journal of immunology.

[30]  D. Campbell,et al.  Rat brain Thy-1 glycoprotein. The amino acid sequence, disulphide bonds and an unusual hydrophobic region. , 1981, The Biochemical journal.

[31]  R. Mulligan,et al.  Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyltransferase. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[32]  I. Weissman,et al.  B220: a B cell-specific member of the T200 glycoprotein family , 1981, Nature.

[33]  E. Reinherz,et al.  Monoclonal antibodies defining distinctive human T cell surface antigens. , 1979, Science.

[34]  W. Paul,et al.  Activation of mouse lymphocytes by anti-immunoglobulin. I. Parameters of the proliferative response , 1978, The Journal of experimental medicine.

[35]  Joan M. V. Allen,et al.  Mouse Thymic Iso-antigens , 1966, Nature.

[36]  H. Macdonald,et al.  Production and characterization of monoclonal anti‐Thy‐1 antibodies that stimulate lymphokine production by cytolytic T cell clones , 1985, European journal of immunology.

[37]  G. Gutman,et al.  Monoclonal antibodies against rat immunoglobulin kappa chains. , 1982, Hybridoma.

[38]  T. Springer Cell-Surface Differentiation in the Mouse , 1980 .

[39]  R. Kretsinger,et al.  Calcium in biological systems , 1976 .