The Memory of Beta Factors

Researchers and practitioners employ a variety of time-series processes to forecast betas, using either short-memory models or implicitly imposing infinite memory. We find that both approaches are inadequate: beta factors show consistent long-memory properties. For the vast majority of stocks, we reject both the short-memory and difference-stationary (random walk) alternatives. A pure long-memory model reliably provides superior beta forecasts compared to all alternatives. Finally, we document the relation of firm characteristics with the forecast error differentials that result from inadequately imposing short-memory or random walk instead of long-memory processes.

[1]  Frank Zhang,et al.  Information Uncertainty and Stock Returns , 2004 .

[2]  Peter C. B. Phillips,et al.  Exact Local Whittle Estimation of Fractional Integration , 2002 .

[3]  R. Stambaugh,et al.  Absolving Beta of Volatility's Effects , 2017 .

[4]  F. Diebold,et al.  Realized Beta: Persistence and Predictability , 2004 .

[5]  É. Moulines,et al.  Least‐squares Estimation of an Unknown Number of Shifts in a Time Series , 2000 .

[6]  I. Welch,et al.  Best Practice for Cost-of-Capital Estimates , 2016, Journal of Financial and Quantitative Analysis.

[7]  F. Nielsen,et al.  Local Polynomial Whittle Estimation of Perturbed Fractional Processes , 2008 .

[8]  Haim Shalit,et al.  Estimating Beta , 2002 .

[9]  Paul Newbold,et al.  Testing the equality of prediction mean squared errors , 1997 .

[10]  Pierre Perron,et al.  Modified local Whittle estimator for long memory processes in the presence of low frequency (and other) contaminations , 2014 .

[11]  R. Hodrick,et al.  The Cross-Section of Volatility and Expected Returns , 2006 .

[12]  F. Diebold,et al.  A Framework for Exploring the Macroeconomic Determinants of Systematic Risk , 2005 .

[13]  Wilfredo Palma,et al.  State space modeling of long-memory processes , 1998 .

[14]  Sorin M. Sorescu,et al.  Short-Sale Constraints, Differences of Opinion, and Overvaluation , 2006, Journal of Financial and Quantitative Analysis.

[15]  Fabrizio Iacone,et al.  Local Whittle estimation of the memory parameter in presence of deterministic components , 2010 .

[16]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[17]  Oldrich A Vasicek,et al.  A NOTE ON USING CROSS‐SECTIONAL INFORMATION IN BAYESIAN ESTIMATION OF SECURITY BETAS , 1973 .

[18]  Laxminarayan Bhandari,et al.  Debt/Equity Ratio and Expected Common Stock Returns: Empirical Evidence , 1988 .

[19]  E. Fama,et al.  Common risk factors in the returns on stocks and bonds , 1993 .

[20]  E. Fama,et al.  A Five-Factor Asset Pricing Model , 2014 .

[21]  Fulvio Corsi,et al.  A Simple Approximate Long-Memory Model of Realized Volatility , 2008 .

[22]  Marc-Oliver Pohle,et al.  Forecasting under Long Memory and Nonstationarity , 2019 .

[23]  G. S. Dissanayake,et al.  State space modeling of Gegenbauer processes with long memory , 2016, Comput. Stat. Data Anal..

[24]  J. Lewellen The Cross Section of Expected Stock Returns , 2014 .

[25]  Katsumi Shimotsu,et al.  EXACT LOCAL WHITTLE ESTIMATION OF FRACTIONAL INTEGRATION WITH UNKNOWN MEAN AND TIME TREND , 2009, Econometric Theory.

[26]  David Power,et al.  UK unit trust performance 1980-1989: A passive time-varying approach , 1992 .

[27]  R. Banz,et al.  The relationship between return and market value of common stocks , 1981 .

[28]  Adrian Pagan,et al.  Some identification and estimation results for regression models with stochastically varying coefficients , 1980 .

[29]  Narasimhan Jegadeesh,et al.  Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency , 1993 .

[30]  D. Andrews Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation , 1991 .

[31]  Brian H. Boyer,et al.  Expected Idiosyncratic Skewness , 2009 .