On a Solution to the Monge Transport Problem on the Real Line Arising from the Strictly Concave Case
暂无分享,去创建一个
[1] H. Thorisson,et al. Unbiased shifts of Brownian motion , 2011, 1112.5373.
[2] Tsuyoshi Murata,et al. {m , 1934, ACML.
[3] C. Villani. Topics in Optimal Transportation , 2003 .
[4] Codina Cotar,et al. Density Functional Theory and Optimal Transportation with Coulomb Cost , 2011, 1104.0603.
[5] F. Santambrogio,et al. Full characterization of optimal transport plans for concave costs , 2013, 1311.3406.
[6] S. Caracciolo,et al. The Dyck bound in the concave 1-dimensional random assignment model , 2019, Journal of Physics A: Mathematical and Theoretical.
[7] R. McCann. Polar factorization of maps on Riemannian manifolds , 2001 .
[8] Julie Delon,et al. Local Matching Indicators for Transport Problems with Concave Costs , 2011, SIAM J. Discret. Math..
[9] W. Gangbo,et al. The geometry of optimal transportation , 1996 .
[10] David Aldous,et al. The Continuum Random Tree III , 1991 .
[11] Jean Louet,et al. The Entropic Regularization of the Monge Problem on the Real Line , 2018, SIAM J. Math. Anal..
[12] Arthur Cayley,et al. The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .
[13] A. Mondino,et al. Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds , 2015, Inventiones mathematicae.
[14] L. Ambrosio,et al. Existence and stability results in the L 1 theory of optimal transportation , 2003 .
[15] Local times for functions with finite variation: two versions of Stieltjes change‐of‐variables formula , 2013, 1307.1288.
[16] S. Banach. Sur les lignes rectifiables et les surfaces dont l'aire est finie , 1925 .