On a Solution to the Monge Transport Problem on the Real Line Arising from the Strictly Concave Case

It is well-known that the optimal transport problem on the real line for the classical distance cost may not have a unique solution. In this paper we recover uniqueness by considering the transport problems where the costs are a power smaller than one of the distance, and letting this parameter tend to one. A complete construction of this solution that we call excursion coupling is given. This is reminiscent to the one in the convex case. It is also characterized as the solution of secondary transport problems. Moreover, a combinatoric/geometric characterization of the routes used for this transport plan is provided.

[1]  H. Thorisson,et al.  Unbiased shifts of Brownian motion , 2011, 1112.5373.

[2]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[3]  C. Villani Topics in Optimal Transportation , 2003 .

[4]  Codina Cotar,et al.  Density Functional Theory and Optimal Transportation with Coulomb Cost , 2011, 1104.0603.

[5]  F. Santambrogio,et al.  Full characterization of optimal transport plans for concave costs , 2013, 1311.3406.

[6]  S. Caracciolo,et al.  The Dyck bound in the concave 1-dimensional random assignment model , 2019, Journal of Physics A: Mathematical and Theoretical.

[7]  R. McCann Polar factorization of maps on Riemannian manifolds , 2001 .

[8]  Julie Delon,et al.  Local Matching Indicators for Transport Problems with Concave Costs , 2011, SIAM J. Discret. Math..

[9]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[10]  David Aldous,et al.  The Continuum Random Tree III , 1991 .

[11]  Jean Louet,et al.  The Entropic Regularization of the Monge Problem on the Real Line , 2018, SIAM J. Math. Anal..

[12]  Arthur Cayley,et al.  The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .

[13]  A. Mondino,et al.  Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds , 2015, Inventiones mathematicae.

[14]  L. Ambrosio,et al.  Existence and stability results in the L 1 theory of optimal transportation , 2003 .

[15]  Local times for functions with finite variation: two versions of Stieltjes change‐of‐variables formula , 2013, 1307.1288.

[16]  S. Banach Sur les lignes rectifiables et les surfaces dont l'aire est finie , 1925 .