Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and the shared auxiliary logical Bell state

In this paper, using the quantum entanglement swapping technologies under the collective-dephasing noise and the collective-rotation noise, two robust quantum dialogue protocols are proposed, respectively. The logical Bell states are used as the traveling states to combat the collective noise. The auxiliary logical Bell state is shared privately between two participants through the manner of direct transmission first. After encoded with the receiver’s secret messages, it swaps entanglement with its adjacent logical Bell state. In this way, the information leakage problem is avoided. Moreover, Eve’s active attacks can be detected with the help of decoy photon technology. For decoding, the Bell state measurements rather than the four-qubit joint measurements are needed.

[1]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[2]  Tianyu Ye,et al.  Information leakage resistant quantum dialogue against collective noise , 2014, 2205.02401.

[3]  Zhang Zhan-jun,et al.  Quantum dialogue revisited , 2005 .

[4]  Guo-Fang Shi,et al.  Bidirectional quantum secure communication scheme based on Bell states and auxiliary particles , 2010 .

[5]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[6]  Deng Fu-Guo,et al.  Efficient Quantum Cryptography Network without Entanglement and Quantum Memory , 2006 .

[7]  N. An,et al.  Quantum secure direct communication by using GHZ states and entanglement swapping , 2006 .

[8]  Tang-Kun Liu,et al.  BIDIRECTIONAL QUANTUM SECURE DIRECT COMMUNICATION IN DRIVEN CAVITY QED , 2009 .

[9]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[10]  Wei Jiang,et al.  High-Capacity Quantum Secure Direct Communication with Single Photons in Both Polarization and Spatial-Mode Degrees of Freedom , 2012 .

[11]  张寿,et al.  Secure quantum dialogue based on single-photon , 2006 .

[12]  Tian-Yu Ye,et al.  Quantum dialogue without information leakage based on the entanglement swapping between any two Bell states and the shared secret Bell state , 2022, 2205.01877.

[13]  Ping Zhou,et al.  Quantum secure direct communication with quantum encryption based on pure entangled states , 2005 .

[14]  Q. Cai Eavesdropping on the two-way quantum communication protocols with invisible photons , 2005, quant-ph/0508002.

[15]  Xi-Han Li,et al.  Efficient quantum key distribution over a collective noise channel (6 pages) , 2008, 0808.0042.

[16]  Wang Yan,et al.  Secure Quantum Key Distribution Network with Bell States and Local Unitary Operations , 2005 .

[17]  Gu Bin,et al.  A two-step quantum secure direct communication protocol with hyperentanglement , 2011 .

[18]  Yu-Bo Sheng,et al.  Fault tolerant quantum key distribution based on quantum dense coding with collective noise , 2009, 0904.0056.

[19]  Man Zhong-xiao,et al.  Quantum Bidirectional Secure Direct Communication via Entanglement Swapping , 2007 .

[20]  M. Teich,et al.  Decoherence-free subspaces in quantum key distribution. , 2003, Physical review letters.

[21]  Tzonelih Hwang,et al.  Bell state entanglement swappings over collective noises and their applications on quantum cryptography , 2013, Quantum Inf. Process..

[22]  Zhan-jun Zhang Robust multiparty quantum secret key sharing over two collective-noise channels , 2006 .

[23]  Man Zhong-xiao,et al.  Controlled Bidirectional Quantum Direct Communication by Using a GHZ State , 2006 .

[24]  Tian-Yu Ye,et al.  Improvement of Controlled Bidirectional Quantum Direct Communication Using a GHZ State , 2013 .

[25]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[26]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[27]  李春燕,et al.  Secure Quantum Key Distribution Network with Bell States and Local Unitary Operations , 2005 .

[28]  Yuguang Yang,et al.  Three-party quantum secret sharing against collective noise , 2010, Quantum Information Processing.

[29]  Gang Xu,et al.  CONTROLLED QUANTUM SECURE DIRECT COMMUNICATION WITH W STATE , 2008 .

[30]  Chao Zheng,et al.  Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs , 2014 .

[31]  Kyu-Hwang Yeon,et al.  Quantum secure direct communication by using a GHZ state , 2006 .

[32]  A Cabello Quantum key distribution in the Holevo limit. , 2000, Physical review letters.

[33]  Gan Gao,et al.  Two quantum dialogue protocols without information leakage , 2010 .

[34]  Bin Gu,et al.  Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel , 2011 .

[35]  Qing-yu Cai,et al.  Classical correlation in quantum dialogue , 2008, 0802.0358.

[36]  Qiao-Yan Wen,et al.  Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication , 2008 .

[37]  Chun-Wei Yang,et al.  Quantum dialogue protocols immune to collective noise , 2013, Quantum Inf. Process..

[38]  Kun Zhong,et al.  Deterministic secure quantum communication over a collective-noise channel , 2009 .

[39]  Chun-Wei Yang,et al.  Fault tolerant two-step quantum secure direct communication protocol against collective noises , 2011 .

[40]  周萍,et al.  Quantum secure direct communication with quantum encryption based on pure entangled states , 2007 .

[41]  Su-Juan Qin,et al.  Comment on: “Three-party quantum secure direct communication based on GHZ states” [Phys. Lett. A 354 (2006) 67] , 2008 .

[42]  叶天语 Quantum Secure Dialogue with Quantum Encryption , 2014 .

[43]  Z. Man,et al.  Secure direct bidirectional communication protocol using the Einstein-Podolsky-Rosen pair block , 2004, quant-ph/0403215.

[44]  夏云杰,et al.  Controlled Bidirectional Quantum Direct Communication by Using a GHZ State , 2006 .

[45]  Tian-Yu Ye,et al.  LARGE PAYLOAD BIDIRECTIONAL QUANTUM SECURE DIRECT COMMUNICATION WITHOUT INFORMATION LEAKAGE , 2013, 2205.02395.

[46]  Ming-Liang Hu,et al.  Quantum secure dialogue by using single photons , 2010 .

[47]  Chuan Wang,et al.  Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state , 2005 .

[48]  Xin Ji,et al.  Three-party quantum secure direct communication based on GHZ states , 2006, quant-ph/0601125.

[49]  Man Zhong-Xiao,et al.  Improvement of Security of Three-Party Quantum Secure Direct Communication Based on GHZ States , 2007 .

[50]  Fu-Guo Deng,et al.  Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems , 2013, 1302.0045.

[51]  夏云杰,et al.  Improvement of Security of Three-Party Quantum Secure Direct Communication Based on GHZ States , 2007 .

[52]  R. Laflamme,et al.  Robust polarization-based quantum key distribution over a collective-noise channel. , 2003, Physical review letters.

[53]  Z. J. Zhang,et al.  A pr 2 00 4 Secure Bidirectional Quantum Communication Protocol without Quantum Channel , .

[54]  Tian-Yu Ye,et al.  Reply to the Comment on “Improvement of Controlled Bidirectional Quantum Direct Communication Using a GHZ State" [Chin. Phys. Lett. 30 (2013) 040305] , 2013 .

[55]  QiaoYan Wen,et al.  Quasi-secure quantum dialogue using single photons , 2007 .

[56]  Guo-Fang Shi,et al.  Bidirectional quantum secure communication based on a shared private Bell state , 2009 .

[57]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[58]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[59]  Nguyen Ba An Quantum dialogue , 2004 .