Decarboxylative ring-opening of 2-oxazolidinones: a facile and modular synthesis of β-chalcogen amines

We report herein the synthesis of primary and secondary β-chalcogen amines through the regioselective ring-opening reaction of non-activated 2-oxazolidinones promoted by in situ generated chalcogenolate anions. The developed one-step protocol enabled the preparation of β-selenoamines, β-telluroamines and β-thioamines with appreciable structural diversity and in yields of up to 95%.

[1]  Tao Dong,et al.  Synthesis and Biological Evaluation of CF3Se‐Substituted α‐Amino Acid Derivatives , 2021, ChemMedChem.

[2]  G. Jiménez‐Osés,et al.  Toward Enantiomerically Pure β-Seleno-α-amino Acids via Stereoselective Se-Michael Additions to Chiral Dehydroalanines. , 2020, Organic letters.

[3]  Hualiang Jiang,et al.  Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors , 2020, Nature.

[4]  T. Fujii,et al.  Copper-Catalyzed Regioselective Aminothiolation of Aromatic and Aliphatic Alkenes with N-Fluorobenzenesulfonimide and Thiols through Three-Component Radical Coupling. , 2019, The Journal of organic chemistry.

[5]  C. Supuran,et al.  Sulfur, selenium and tellurium containing amines act as effective carbonic anhydrase activators. , 2019, Bioorganic chemistry.

[6]  M. Gao,et al.  Electrochemical Aminoselenation and Oxyselenation of Styrenes with Hydrogen Evolution. , 2019, Organic letters.

[7]  Harkesh B. Singh,et al.  Reactivity of Selenocystine and Tellurocystine: Structure and Antioxidant Activity of the Derivatives. , 2018, Chemistry.

[8]  Akanksha K. Menon,et al.  Effect of Heteroatom and Doping on the Thermoelectric Properties of Poly(3‐alkylchalcogenophenes) , 2018, Advanced Energy Materials.

[9]  C. Supuran,et al.  Synthesis of Novel Selenides Bearing Benzenesulfonamide Moieties as Carbonic Anhydrase I, II, IV, VII, and IX Inhibitors. , 2017, ACS medicinal chemistry letters.

[10]  M. B. Leite,et al.  Antioxidant protection by β‐selenoamines against thioacetamide‐induced oxidative stress and hepatotoxicity in mice , 2017, Journal of biochemical and molecular toxicology.

[11]  R. Hondal,et al.  Why Nature Chose Selenium. , 2016, ACS chemical biology.

[12]  Chenglong He,et al.  Molecular Iodine-Mediated Difunctionalization of Alkenes with Nitriles and Thiols Leading to β-Acetamido Sulfides. , 2016, The Journal of organic chemistry.

[13]  M. Karlsson Ott,et al.  Multifunctional Antioxidants: Regenerable Radical-Trapping and Hydroperoxide-Decomposing Ebselenols. , 2016, Angewandte Chemie.

[14]  S. Amin,et al.  Design, Synthesis, and Biological Evaluation of Novel Selenium (Se-NSAID) Molecules as Anticancer Agents. , 2016, Journal of medicinal chemistry.

[15]  Amar A. Hosamani,et al.  Efficient and practical synthesis of modular chiral β-organochalcogeno amines, ArYCH2CH(R)NH2, and single crystal structures of (S)-MsOCH2CH(Bz)NH3+·Cl− and (R)-MsOCH2CH(Ph)NH3+·Cl− , 2015 .

[16]  Yang Zheng,et al.  NaI-Mediated Acetamidosulphenylation of Alkenes with Nitriles as the Nucleophiles: A Direct Access to Acetamidosulfides. , 2015, Organic letters.

[17]  Peng Li,et al.  Redox-Responsive Fluorescent Probes with Different Design Strategies. , 2015, Accounts of chemical research.

[18]  B. Hale,et al.  Optimizing the Performance of Conjugated Polymers in Organic Photovoltaic Cells by Traversing Group 16 , 2014 .

[19]  V. Gladyshev,et al.  Selenoproteins: molecular pathways and physiological roles. , 2014, Physiological reviews.

[20]  T. Weber,et al.  Direct oxidative allylic and vinylic amination of alkenes through selenium catalysis. , 2013, Angewandte Chemie.

[21]  D. Manna,et al.  Antithyroid drugs and their analogues: synthesis, structure, and mechanism of action. , 2013, Accounts of chemical research.

[22]  M. Piroddi,et al.  Selenium Containing Compounds from Poison to Drug Candidates: A Review on the GPx-like Activity , 2013 .

[23]  Bruno B. Ravanello,et al.  Synthesis of chiral β-chalcogen amine derivatives and Gram-positive bacteria activity , 2012 .

[24]  R. Schwab,et al.  Ephedrine-based diselenide: a promiscuous catalyst suitable to mimic the enzyme glutathione peroxidase (GPx) and to promote enantioselective C-C coupling reactions. , 2012, Organic & biomolecular chemistry.

[25]  J. Rocha,et al.  Antioxidant activity of β-selenoamines and their capacity to mimic different enzymes , 2012, Molecular and Cellular Biochemistry.

[26]  M. Paixão,et al.  Chiral organoselenium-transition-metal catalysts in asymmetric transformations. , 2011, Dalton transactions.

[27]  L. Wessjohann,et al.  Straightforward Method for theSynthesis of Selenocysteine and Selenocystine Derivatives from l-Serine Methyl Ester , 2010 .

[28]  R. B. Sunoj,et al.  Organoselenium chemistry: role of intramolecular interactions. , 2010, Chemical reviews.

[29]  T. Wirth,et al.  Green chemistry with selenium reagents: development of efficient catalytic reactions. , 2009, Angewandte Chemie.

[30]  R. Schwab,et al.  Ring opening of unprotected aziridines by zinc selenolates in a biphasic system , 2009 .

[31]  M. Paixão,et al.  Synthesis and application of chiral beta-amino disulfides as ligands for the enantioselective addition of diethylzinc to aldehydes. , 2008, Chirality.

[32]  A. L. Braga,et al.  Modular chiral β-selenium-, sulfur-, and tellurium amides: synthesis and application in the palladium-catalyzed asymmetric allylic alkylation , 2008 .

[33]  M. Paixão,et al.  Seleno-Imine: A New Class of Versatile, Modular N,Se Ligands for ­Asymmetric Palladium-Catalyzed Allylic Alkylation , 2005 .

[34]  G. Mugesh,et al.  Internally stabilized selenocysteine derivatives: syntheses, 77Se NMR and biomimetic studies. , 2005, Organic & biomolecular chemistry.

[35]  J. Rocha,et al.  Organoselenium and organotellurium compounds: toxicology and pharmacology. , 2004, Chemical reviews.

[36]  L. Bagnoli,et al.  Asymmetric azidoselenenylation of alkenes: a key step for the synthesis of enantiomerically enriched nitrogen-containing compounds. , 2003, Angewandte Chemie.

[37]  M. Paixão,et al.  Synthesis of new chiral aliphatic amino diselenides and their application as catalysts for the enantioselective addition of diethylzinc to aldehydes. , 2003, Organic letters.

[38]  R. Guigó,et al.  Characterization of Mammalian Selenoproteomes , 2003, Science.

[39]  V. Turk,et al.  The major cysteine proteinase of Trypanosoma cruzi: a valid target for chemotherapy of Chagas disease. , 2001, Current pharmaceutical design.

[40]  H. Sies,et al.  Chemistry of biologically important synthetic organoselenium compounds. , 2001, Chemical reviews.

[41]  Harkesh B. Singh,et al.  Synthetic organoselenium compounds as antioxidants:glutathione peroxidase activity , 2000 .

[42]  M. Uegaki,et al.  A Simple Synthesis of -Amino Sulfides , 1997 .

[43]  H. Senn,et al.  Synthesis of L-selenocystine,L-[77Se]selenocystine andL-tellurocystine , 1997 .

[44]  R J Fletterick,et al.  The crystal structure of cruzain: a therapeutic target for Chagas' disease. , 1995, Journal of molecular biology.

[45]  M. Watanabe,et al.  Metabolism of aziridines and the mechanism of their cytotoxicity. , 1994, Drug metabolism reviews.

[46]  S. Patai,et al.  The Chemistry of Organic Selenium and Tellurium Compounds , 1994 .

[47]  E. Woo,et al.  The use of 2-oxazolidinones as latent aziridine equivalents. 2. Aminoethylation of aromatic amines, phenols, and thiophenols , 1992 .

[48]  K. Soda,et al.  Synthesis of l-selenodjenkolate and its degradation with methionine γ-lyase , 1985 .

[49]  H. Ganther,et al.  Selenium: biochemical role as a component of glutathione peroxidase. , 2009, Science.

[50]  L. Flohé,et al.  Glutathione peroxidase: A selenoenzyme , 1973, FEBS letters.

[51]  R. Walter,et al.  Optically active selenium-containing amino acids. The synthesis of L-selenocystine and L-selenolanthionine. , 1970, The Journal of organic chemistry.