Artificial neural network-based prediction of effective thermal conductivity of a granular bed in a gaseous environment

Artificial neural network (ANN), a machine learning technique, is employed to predict the effective thermal conductivity of granular assemblies in the presence of a stagnant gas. ANN is trained with the help of estimated thermal conductivities calculated through resistor network (RN) model. RN model considers the effect of the presence of stagnant gas and the gas pressure (Smoluchowski effect) for the calculation of effective thermal conductivity. Granular assemblies are generated and compacted through discrete element method (DEM). The ANN is trained to predict the effective thermal conductivity of a granular assembly for a set of measurable experimental parameters (stress and packing fraction) without requiring the knowledge of microstructural details (coordination numbers and overlaps) of the assembly. The predicted effective thermal conductivity values through ANN are in good agreement with the experimental results. Estimation of effective thermal conductivity through the trained ANN is much faster (few seconds compared to few hours required for DEM together with RN approach) with very good accuracy.

[1]  H. Johnstone,et al.  Heat and mass transfer in packed beds , 1955 .

[2]  P. Zehner,et al.  Wärmeleitfähigkeit von Schüttungen bei mäßigen Temperaturen , 1970 .

[3]  George S. Springer,et al.  Heat Transfer in Rarefied Gases , 1971 .

[4]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[5]  G. Batchelor,et al.  Thermal or electrical conduction through a granular material , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  R. Bauer,et al.  Effective Radial Thermal Conductivity of Packings in Gas Flow , 1978 .

[7]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[8]  F. Goodman,et al.  Thermal accommodation coefficients , 1980 .

[9]  S. W. Tam,et al.  Thermal Conductivities for Sintered and Sphere-Pac Li2O and γ-LiAlO2 Solid Breeders with and Without Irradiation Effects , 1985 .

[10]  T. Terai,et al.  Density dependence on thermal properties of Li2TiO3 pellets , 1998 .

[11]  S. Singhal Advances in solid oxide fuel cell technology , 2000 .

[12]  J. Reimann,et al.  Thermal conductivity of compressed ceramic breeder pebble beds , 2002 .

[13]  K. Bagi Statistical analysis of contact force components in random granular assemblies , 2003 .

[14]  H. Kalman,et al.  A theoretical model for effective thermal conductivity (ETC) of particulate beds under compression , 2004 .

[15]  Amar M. Khudhair,et al.  A review on phase change energy storage: materials and applications , 2004 .

[16]  M. Kamlah,et al.  Drucker–Prager–Cap creep modelling of pebble beds in fusion blankets , 2005 .

[17]  B. Sammakia,et al.  An Efficient Network Model for Determining the Effective Thermal Conductivity of Particulate Thermal Interface Materials , 2008, IEEE Transactions on Components and Packaging Technologies.

[18]  Lianghao Han,et al.  A modified Drucker-Prager Cap model for die compaction simulation of pharmaceutical powders , 2008 .

[19]  M. Rohde,et al.  Thermal conductivity of sintered lithium orthosilicate compacts , 2009 .

[20]  Amit Kumar Gupta,et al.  Predictive modelling of turning operations using response surface methodology, artificial neural networks and support vector regression , 2010 .

[21]  Marc Kamlah,et al.  Discrete element modelling of pebble beds: With application to uniaxial compression tests of ceramic breeder pebble beds , 2010 .

[22]  Tae Sup Yun,et al.  Three-dimensional random network model for thermal conductivity in particulate materials , 2010 .

[23]  Alice Ying,et al.  Status of ceramic breeder pebble bed thermo-mechanics R&D and impact on breeder material mechanical strength , 2012 .

[24]  Marc Kamlah,et al.  Mechanics of binary and polydisperse spherical pebble assembly , 2012 .

[25]  Fei Huang,et al.  Brief Introduction of Back Propagation (BP) Neural Network Algorithm and Its Improvement , 2012 .

[26]  Swadesh Kumar Singh,et al.  Finite element modeling and prediction of thickness strains of deep drawing using ANN and LS-Dyna for ASS304 , 2013 .

[27]  Sharath Chandra Guntuku,et al.  Optimisation of turning parameters by integrating genetic algorithm with support vector regression and artificial neural networks , 2014, The International Journal of Advanced Manufacturing Technology.

[28]  Raghuram Karthik Desu,et al.  Mechanics of binary crushable granular assembly through discrete element method , 2016 .

[29]  R. Annabattula,et al.  A semi-analytical model for the effective thermal conductivity of a multi-component polydisperse granular bed , 2017 .

[30]  Marc Kamlah,et al.  Effective thermal conductivity of advanced ceramic breeder pebble beds , 2017 .

[31]  A. Gusarov,et al.  Modeling of granular packed beds, their statistical analyses and evaluation of effective thermal conductivity , 2017 .

[32]  Dorian A. H. Hanaor,et al.  Influence of gas pressure on the effective thermal conductivity of ceramic breeder pebble beds , 2017 .

[33]  Y. Gan,et al.  Effective thermal conductivity of a compacted pebble bed in a stagnant gaseous environment: An analytical approach together with DEM , 2018 .

[34]  A. Ying,et al.  Experimental measurement and numerical modeling of the effective thermal conductivity of lithium meta-titanate pebble bed , 2018 .

[35]  Y. Gan,et al.  Discrete element method for effective thermal conductivity of packed pebbles accounting for the Smoluchowski effect , 2018 .