Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator.
暂无分享,去创建一个
Ioannis G Kevrekidis | Felix Dietrich | Qianxiao Li | Erik M Bollt | I. Kevrekidis | Qianxiao Li | E. Bollt | Felix Dietrich
[1] Frank Noé,et al. Variational Koopman models: Slow collective variables and molecular kinetics from short off-equilibrium simulations. , 2016, The Journal of chemical physics.
[2] B. O. Koopman,et al. Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.
[3] Steven L. Brunton,et al. On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.
[4] I. Kevrekidis,et al. Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations , 1990 .
[5] S. Brunton,et al. Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.
[6] I. Mezić,et al. Isostables, isochrons, and Koopman spectrum for the action-angle representation of stable fixed point dynamics , 2013, 1302.0032.
[7] I. Mezić,et al. Applied Koopmanism. , 2012, Chaos.
[8] Steven L. Brunton,et al. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control , 2015, PloS one.
[9] Michael Elad,et al. Sparse and Redundant Modeling of Image Content Using an Image-Signature-Dictionary , 2008, SIAM J. Imaging Sci..
[10] J. Neumann. Zur Operatorenmethode In Der Klassischen Mechanik , 1932 .
[11] Kari Karhunen,et al. Über lineare Methoden in der Wahrscheinlichkeitsrechnung , 1947 .
[12] Guigang Zhang,et al. Deep Learning , 2016, Int. J. Semantic Comput..
[13] Matthew O. Williams,et al. A Kernel-Based Approach to Data-Driven Koopman Spectral Analysis , 2014, 1411.2260.
[14] Clarence W. Rowley,et al. A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.
[15] Igor Mezic,et al. Building energy modeling: A systematic approach to zoning and model reduction using Koopman Mode Analysis , 2015 .
[16] I. Mezić. Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .
[17] I. Mezić,et al. Analysis of Fluid Flows via Spectral Properties of the Koopman Operator , 2013 .
[18] R. Téman,et al. Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations , 1988 .
[19] Kjersti Engan,et al. Method of optimal directions for frame design , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).
[20] Igor Mezic,et al. Koopman Operator Spectrum and Data Analysis , 2017, 1702.07597.
[21] A. Kolmogoroff. Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung , 1931 .
[22] Clarence W. Rowley,et al. Data fusion via intrinsic dynamic variables: An application of data-driven Koopman spectral analysis , 2014, 1411.5424.
[23] Zhizhen Zhao,et al. Spatiotemporal Feature Extraction with Data-Driven Koopman Operators , 2015, FE@NIPS.
[24] Igor Mezi'c,et al. Correspondence between Koopman mode decomposition, resolvent mode decomposition, and invariant solutions of the Navier-Stokes equations , 2016, 1603.08378.
[25] Hao Wu,et al. Data-Driven Model Reduction and Transfer Operator Approximation , 2017, J. Nonlinear Sci..
[26] Huibert Kwakernaak,et al. Linear Optimal Control Systems , 1972 .
[27] D. Giannakis. Data-driven spectral decomposition and forecasting of ergodic dynamical systems , 2015, Applied and Computational Harmonic Analysis.
[28] Yann LeCun,et al. Convolutional networks and applications in vision , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.
[29] I. Mezić,et al. Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.
[30] P. Schmid,et al. Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.
[31] Bingni W. Brunton,et al. Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition , 2014, Journal of Neuroscience Methods.
[32] A. Ng. Feature selection, L1 vs. L2 regularization, and rotational invariance , 2004, Twenty-first international conference on Machine learning - ICML '04.
[33] Andrzej Banaszuk,et al. Comparison of systems with complex behavior , 2004 .
[34] J. Neumann,et al. Operator Methods in Classical Mechanics, II , 1942 .
[35] D. L. Donoho,et al. Compressed sensing , 2006, IEEE Trans. Inf. Theory.