Dendrimers and gold nanoparticles as exo-receptors sensing biologically important anions.

Dendrimers, alkylthiol-gold nanoparticles and gold-nanoparticle-cored dendrimers containing tethers terminated by a redox group (typically an iron sandwich) attached to a hydrogen-bonding group (amido, amino, silyl) are selective and efficient exo-receptors for the recognition, sensing and titration of oxo-anions, including ATP(2-), or halogens, mostly using cyclic voltammetry. Various positive dendritic effects were disclosed (in contrast to catalysis), and large gold-nanoparticle-cored redox dendrimers of this type that contain several hundred equivalent ferrocenyl groups readily adsorb on Pt electrodes, providing useful regenerable electrochemical sensors.

[1]  D. Astruc,et al.  Single‐Step Six‐Electron Transfer in a Heptanuclear Complex: Isolation of Both Redox Forms , 1995 .

[2]  S. Hanessian,et al.  Molecular Recognition and Self-Assembly by Non-amidic Hydrogen Bonding. An Exceptional Assembler of Neutral and Charged Supramolecular Structures , 1995 .

[3]  H. Abruña,et al.  Redox-Active Ferrocenyl Dendrimers: Thermodynamics and Kinetics of Adsorption, In-Situ Electrochemical Quartz Crystal Microbalance Study of the Redox Process and Tapping Mode AFM Imaging , 1997 .

[4]  Anthony W. Czarnik,et al.  Chemical Communication in Water Using Fluorescent Chemosensors , 1994 .

[5]  I. Cuadrado,et al.  Silicon-based ferrocenyl dendrimers as anion receptors in solution and immobilized onto electrode surfaces , 1999 .

[6]  L. Liz‐Marzán,et al.  Gold nanoparticle thin films , 2002 .

[7]  D. A. Gustowski,et al.  Rationalization of the unusual electrochemical behavior observed in lariat ethers and other reducible macrocyclic systems , 1988 .

[8]  D. Astruc,et al.  Nanoscopic assemblies between supramolecular redox active metallodendrons and gold nanoparticles: synthesis, characterization, and selective recognition of H2PO4-, HSO4-, and adenosine-5'-triphosphate (ATP2-) anions. , 2003, Journal of the American Chemical Society.

[9]  O. Reynes,et al.  Poly(Ferrocenylalkylammonium): A Molecular Electrode Material for Dihydrogenphosphate Sensing , 2003 .

[10]  A. Kaifer,et al.  Asymmetric Redox-Active Dendrimers Containing a Ferrocene Subunit. Preparation, Characterization, and Electrochemistry , 1998 .

[11]  Steven C. Zimmerman,et al.  Dendrimers in Supramolecular Chemistry: From Molecular Recognition to Self-Assembly. , 1997, Chemical reviews.

[12]  P. Beer Transition-Metal Receptor Systems for the Selective Recognition and Sensing of Anionic Guest Species , 1998 .

[13]  S. Creager,et al.  Long-Range Electronic Coupling between Ferrocene and Gold in Alkanethiolate-based Monolayers on Electrodes , 1997 .

[14]  R. Deschenaux,et al.  Synthesis, Characterization, and Mesomorphic Properties of a Mixed [60]Fullerene−Ferrocene Liquid-Crystalline Dendrimer , 1999 .

[15]  Massimiliano Valentini,et al.  Applications of Pulsed Field Gradient Spin−Echo Measurements to the Determination of Molecular Diffusion (and Thus Size) in Organometallic Chemistry , 2000 .

[16]  D. Astruc,et al.  The Dendritic Effect in Molecular Recognition: Ferrocene Dendrimers and Their Use as Supramolecular Redox Sensors for the Recognition of Small Inorganic Anions , 1997 .

[17]  D. Astruc,et al.  Supramolecular H-bonded assemblies of redox-active metallodendrimers and positive and unusual dendritic effects on the recognition of H2PO4-. , 2003, Journal of the American Chemical Society.

[18]  B. González,et al.  Mixed Ferrocene–Cobaltocenium Dendrimers: The Most Stable Organometallic Redox Systems Combined in a Dendritic Molecule , 2000 .

[19]  D. Astruc,et al.  Supramolecular gold nanoparticles for the redox recognition of oxoanions: syntheses, titrations, stereoelectronic effects, and selectivity. , 2002, Journal of the American Chemical Society.

[20]  R. Hosseinzadeh,et al.  Self-Assembly of Quinodimethanes through Covalent Bonds: A Novel Principle for the Synthesis of Functional Macrocycles. , 1999, Angewandte Chemie.

[21]  A. Bard,et al.  Electron transfer to and from molecules containing multiple, noninteracting redox centers. Electrochemical oxidation of poly(vinylferrocene) , 1978 .

[22]  M. Carducci,et al.  Dendron-Controlled Nucleation and Growth of Gold Nanoparticles. , 2001, Angewandte Chemie.

[23]  A. Kaifer,et al.  Multisite Inclusion Complexation of Redox Active Dendrimer Guests , 1997 .

[24]  E. W. Meijer,et al.  About Dendrimers: Structure, Physical Properties, and Applications. , 1999, Chemical reviews.

[25]  H. Gibson,et al.  Cooperative self-assembly of dendrimers via pseudorotaxane formation from a homotritopic guest molecule and complementary monotopic host dendrons. , 2002, Journal of the American Chemical Society.

[26]  D. Astruc,et al.  Electron Transfer and Radical Processes in Transition-Metal Chemistry , 1995 .

[27]  D. Reinhoudt,et al.  Molecular Recognition by Self-Assembled Monolayers of Cavitand Receptors , 1994, Science.

[28]  R. Walker,et al.  Solvent polarity at an aqueous/alkane interface: the effect of solute identity. , 2003, Journal of the American Chemical Society.

[29]  É. Cloutet,et al.  Dendritic stars by ring-opening-metathesis polymerization from ruthenium-carbene initiators. , 2003, Angewandte Chemie.

[30]  P. Beer,et al.  Transition metal and organometallic anion complexation agents , 2003 .

[31]  D. Astruc,et al.  POLYCATIONIC METALLODENDRIMERS WITH COBALTICINIUM AND FECP(ARENE)+ TERMINI , 1997 .

[32]  H. Nishihara,et al.  Synthesis, redox behavior and electrodeposition of biferrocene-modified gold clusters ☆ , 1999 .

[33]  G. Whitesides,et al.  Patterned Self-Assembled Monolayers and Meso-Scale Phenomena , 1995 .

[34]  F. Schmidtchen,et al.  Artificial Organic Host Molecules for Anions. , 1997, Chemical reviews.

[35]  O. Reynes,et al.  Amplification upon polymerization of the electrochemical anion sensing properties of an amidoferrocene monoreceptor molecule , 2002 .

[36]  William A. Goddard,et al.  Starburst Dendrimers: Molecular‐Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter , 1990 .

[37]  Philip A. Gale,et al.  Anion Recognition and Sensing: The State of the Art and Future Perspectives. , 2001, Angewandte Chemie.

[38]  P. Jutzi,et al.  Maximum Functionalization of Metallocenes: Decaallylferrocene and Derivatives , 1996 .

[39]  A. Kaifer,et al.  MOLECULAR ORIENTATION EFFECTS ON THE RATES OF HETEROGENEOUS ELECTRON TRANSFER OF UNSYMMETRIC DENDRIMERS , 1999 .

[40]  A. Kaifer,et al.  Synthesis, electrochemistry, and interactions with beta-cyclodextrin of dendrimers containing a single ferrocene subunit located "off-center". , 2000, The Journal of organic chemistry.

[41]  M. Delville,et al.  Organometallic Molecular Trees as Multielectron and Multiproton Reservoirs: CpFe+‐Induced Nonaallylation of Mesitylene and Phase‐Transfer Catalyzed Synthesis of a Redox‐Active Nonairon Complex , 1993 .

[42]  M. Hill,et al.  Synthesis, Characterization, and Electrochemistry of Heterometallic Dendrimers. , 1997, Inorganic chemistry.

[43]  J. H. Tucker,et al.  Recent developments in the redox-switched binding of organic compounds. , 2002, Chemical Society reviews.

[44]  D. Astruc,et al.  Dendritic catalysts and dendrimers in catalysis. , 2001, Chemical reviews.

[45]  P. Beer Transition Metal and Organic Redox-Active Macrocycles Designed to Electrochemically Recognize Charged and Neutral Guest Species , 1992 .

[46]  H. S. Kim,et al.  Affinity biosensor for avidin using a double functionalized dendrimer monolayer on a gold electrode. , 2000, Analytical biochemistry.

[47]  J. Lehn,et al.  Supramolecular Chemistry: Receptors, Catalysts, and Carriers , 1985, Science.

[48]  S. Creager,et al.  Voltammetry of Redox-Active Groups Irreversibly Adsorbed onto Electrodes. Treatment Using the Marcus Relation between Rate and Overpotential , 1994 .

[49]  Jean-Claude Daran,et al.  Phosphorus-Containing Dendrimers with Ferrocenyl Units at the Core, within the Branches, and on the Periphery , 2000 .

[50]  D. Astruc,et al.  A Polycationic Metallodendrimer with 24 [Fe(η5 -C5 Me5 )(η6 -N-Alkylaniline)]+ Termini That Recognizes Chloride and Bromide Anions. , 1999, Angewandte Chemie.

[51]  H. Hill,et al.  The electrochemistry of hexacyanoruthenate at carbon electrodes and the use of ruthenium compounds as mediators in the glucose/glucose oxidase system , 1986 .

[52]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[53]  R. Murray,et al.  Monolayer-protected cluster molecules. , 2000, Accounts of chemical research.

[54]  G. Newkome,et al.  Suprasupermolecules with Novel Properties: Metallodendrimers. , 1999, Chemical reviews.

[55]  H. S. Kim,et al.  Functionalization of a poly(amidoamine) dendrimer with ferrocenyls and its application to the construction of a reagentless enzyme electrode. , 2000, Analytical chemistry.

[56]  I. Koch,et al.  Arsenic Species in Terrestrial Fungi and Lichens from Yellowknife, NWT, Canada , 2000 .

[57]  B. Pugin,et al.  Dendrimers Containing Chiral Ferrocenyl Diphosphine Ligands for Asymmetric Catalysis , 1998 .

[58]  M. Ibisate,et al.  Ferrocenyl-Functionalized Poly(propylenimine) Dendrimers , 1996 .

[59]  E. Fischer Einfluss der Configuration auf die Wirkung der Enzyme , 1894 .

[60]  David E Reichert,et al.  Self-Assembling Dendrimers , 1996, Science.