SEMI-DISCRETIZATION OF DELAYED DYNAMICAL SYSTEMS
暂无分享,去创建一个
[1] G. Hill. On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon , 1886 .
[2] Gábor Stépán,et al. COMPARISON OF THE DYNAMICS OF LOW IMMERSION MILLING AND CUTTING WITH VARYING SPINDLE SPEED , 2001 .
[3] Gábor Stépán,et al. Remote Control of Periodic Robot Motion , 2000 .
[4] Gábor Stépán,et al. Stability chart for the delayed Mathieu equation , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[5] Gábor Stépán,et al. Vibrations of machines subjected to digital force control , 2001 .
[6] R. Ibrahim. Book Reviews : Nonlinear Oscillations: A.H. Nayfeh and D.T. Mook John Wiley & Sons, New York, New York 1979, $38.50 , 1981 .
[7] A. Hurwitz. Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt , 1895 .
[8] G. Stépán,et al. Stability of the milling process , 2000 .
[9] Jack K. Hale,et al. Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.
[10] Miklós Farkas,et al. Periodic Motions , 1994 .
[11] Balth van der Pol Jun. Doct.Sc.. II. On the stability of the solutions of Mathieu's equation , 1928 .