An iterative implementation of rotated coordinates for inverse problems.

A generalized inversion method is presented that uses a rotated coordinates technique [Collins and Fishman, J. Acoust. Soc. Am. 98, 1637-1644 (1995)] in simulated annealing to invert for both the location of an acoustic source and parameters that describe the ocean seabed. The rotated coordinates technique not only aids in the inversion process but also indicates the coupling of the source and environmental parameters and the relative sensitivities of the cost function to changes in the various parameters. The information obtained from the rotated coordinates provides insights into how the inversion problem can be effectively decoupled. An iterative process consisting of multiple simulated annealing runs that each use a different set of rotated coordinates is demonstrated. This multistep algorithm is called systematic decoupling using rotated coordinates and is especially helpful when inverting for a large number of unknown parameters. The cost function minimized in the inversion algorithm is model-data cross-hydrophone spectra summed coherently over frequency and receiver pairs. The results of applying this inversion method to simulated data are presented in this paper.

[1]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[2]  Evan K. Westwood,et al.  A normal mode model for acousto‐elastic ocean environments , 1996 .

[3]  S. Dosso Quantifying uncertainty in geoacoustic inversion. I. A fast Gibbs sampler approach. , 2002, The Journal of the Acoustical Society of America.

[4]  Fallat,et al.  Hybrid geoacoustic inversion of broadband Mediterranean Sea data , 2000, The Journal of the Acoustical Society of America.

[5]  Peter Gerstoft,et al.  Inversion of acoustic data using a combination of genetic algorithms and the Gauss–Newton approach , 1995 .

[6]  A. Tolstoy,et al.  Matched Field Processing for Underwater Acoustics , 1992 .

[7]  Stan E. Dosso,et al.  GEOACOUSTIC INVERSION VIA LOCAL, GLOBAL, AND HYBRID ALGORITHMS , 1999 .

[8]  E. Hamilton Geoacoustic modeling of the sea floor , 1980 .

[9]  H. Szu Fast simulated annealing , 1987 .

[10]  S. Dosso,et al.  Quantifying uncertainty in geoacoustic inversion. II. Application to broadband, shallow-water data. , 2002, The Journal of the Acoustical Society of America.

[11]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[12]  Peter Gerstoft,et al.  Inversion of seismoacoustic data using genetic algorithms and a posteriori probability distributions , 1994 .

[13]  W A Kuperman,et al.  Focalization: environmental focusing and source localization. , 1991, The Journal of the Acoustical Society of America.

[15]  David P. Knobles,et al.  Broadband localization by matched fields in range and bearing in shallow water , 1994 .

[16]  William L. Goffe,et al.  SIMANN: FORTRAN module to perform Global Optimization of Statistical Functions with Simulated Annealing , 1992 .

[17]  N. R. Chapman,et al.  Workshop '97: Benchmarking for Geoacoustic Inversion in Shallow Water , 1998 .

[18]  Evan K. Westwood Broadband matched‐field source localization , 1992 .

[19]  M. D. Collins,et al.  Estimating elastic sediment properties with the self-starter , 2000 .

[20]  Tracianne B Neilsen,et al.  Extraction of acoustic normal mode depth functions using vertical line array data. , 2002, The Journal of the Acoustical Society of America.

[21]  M. Snellen,et al.  Multi-Frequency Matched-Field Inversion of Benchmark Data using a Genetic Algorithm , 1998 .

[22]  R. J. Cederberg,et al.  Application of an improved self-starter to geoacoustic inversion , 1997 .

[23]  David P. Knobles,et al.  The Inversion of Ocean Waveguide Parameters Using a Nonlinear Least Squares Approach , 1998 .

[24]  Michael D. Collins,et al.  Efficient navigation of parameter landscapes , 1994 .

[25]  Peter Gerstoft,et al.  Full Field Inversion Methods In Ocean And Seismo Acoustics , 1995 .