A Dictionary Learning Approach for Poisson Image Deblurring

The restoration of images corrupted by blur and Poisson noise is a key issue in medical and biological image processing. While most existing methods are based on variational models, generally derived from a maximum a posteriori (MAP) formulation, recently sparse representations of images have shown to be efficient approaches for image recovery. Following this idea, we propose in this paper a model containing three terms: a patch-based sparse representation prior over a learned dictionary, the pixel-based total variation regularization term and a data-fidelity term capturing the statistics of Poisson noise. The resulting optimization problem can be solved by an alternating minimization technique combined with variable splitting. Extensive experimental results suggest that in terms of visual quality, peak signal-to-noise ratio value and the method noise, the proposed algorithm outperforms state-of-the-art methods.

[1]  G. Muehllehner,et al.  Positron emission tomography , 2006, Physics in medicine and biology.

[2]  Alexei A. Efros,et al.  Texture synthesis by non-parametric sampling , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[3]  Michael Elad,et al.  Image Sequence Denoising via Sparse and Redundant Representations , 2009, IEEE Transactions on Image Processing.

[4]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[5]  Lei Zhang,et al.  Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization , 2010, IEEE Transactions on Image Processing.

[6]  Thomas Brox,et al.  On the Equivalence of Soft Wavelet Shrinkage, Total Variation Diffusion, Total Variation Regularization, and SIDEs , 2004, SIAM J. Numer. Anal..

[7]  Gilles Aubert,et al.  A Variational Approach to Removing Multiplicative Noise , 2008, SIAM J. Appl. Math..

[8]  Scott T. Rickard,et al.  Comparing Measures of Sparsity , 2008, IEEE Transactions on Information Theory.

[9]  Junfeng Yang,et al.  An Efficient TVL1 Algorithm for Deblurring Multichannel Images Corrupted by Impulsive Noise , 2009, SIAM J. Sci. Comput..

[10]  S. Osher,et al.  Image restoration: Total variation, wavelet frames, and beyond , 2012 .

[11]  J. Sanes,et al.  Improved Detection of Event-Related Functional MRI Signals Using Probability Functions , 2001, NeuroImage.

[12]  Thierry Blu,et al.  Image Denoising in Mixed Poisson–Gaussian Noise , 2011, IEEE Transactions on Image Processing.

[13]  G. Aubert,et al.  A VARIATIONAL APPROACH TO REMOVE MULTIPLICATIVE NOISE , 2006 .

[14]  Ming Jiang,et al.  Blind deblurring of spiral CT images , 2003, Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256).

[15]  José M. Bioucas-Dias,et al.  An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems , 2009, IEEE Transactions on Image Processing.

[16]  L. Cohen,et al.  Non-local Regularization of Inverse Problems , 2008, ECCV.

[17]  M. Burger,et al.  Accurate EM-TV algorithm in PET with low SNR , 2008, 2008 IEEE Nuclear Science Symposium Conference Record.

[18]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[19]  Sundaresh Ram,et al.  Removing Camera Shake from a Single Photograph , 2009 .

[20]  Stanley Osher,et al.  Multiplicative Denoising and Deblurring: Theory and Algorithms , 2003 .

[21]  Stuart Crozier,et al.  Denoising of Dynamic Contrast-Enhanced MR Images Using Dynamic Nonlocal Means , 2010, IEEE Transactions on Medical Imaging.

[22]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[23]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[24]  Laure Blanc-Féraud,et al.  Sparse Poisson Noisy Image Deblurring , 2012, IEEE Transactions on Image Processing.

[25]  Stefano Soatto,et al.  Direct Sparse Deblurring , 2010, Journal of Mathematical Imaging and Vision.

[26]  Nelly Pustelnik,et al.  Nested Iterative Algorithms for Convex Constrained Image Recovery Problems , 2008, SIAM J. Imaging Sci..

[27]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[28]  Thomas S. Huang,et al.  Sparse representation based blind image deblurring , 2011, 2011 IEEE International Conference on Multimedia and Expo.

[29]  Patrick Bouthemy,et al.  Patch-Based Nonlocal Functional for Denoising Fluorescence Microscopy Image Sequences , 2010, IEEE Transactions on Medical Imaging.

[30]  Richard Szeliski,et al.  A content-aware image prior , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[31]  David L. Wilson,et al.  Selective evaluation of noise, blur, and aliasing artifacts in fast MRI reconstructions using a weighted perceptual difference model: Case-PDM , 2009, Medical Imaging.

[32]  Michael Elad,et al.  Learning Multiscale Sparse Representations for Image and Video Restoration , 2007, Multiscale Model. Simul..

[33]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[34]  Laurent D. Cohen,et al.  Non-local Regularization of Inverse Problems , 2008, ECCV.

[35]  Jian-Feng Cai,et al.  Blind motion deblurring from a single image using sparse approximation , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[37]  Michael K. Ng,et al.  Multiplicative Noise Removal via a Learned Dictionary , 2012, IEEE Transactions on Image Processing.

[38]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[39]  Suyash P. Awate,et al.  Feature-Preserving MRI Denoising: A Nonparametric Empirical Bayes Approach , 2007, IEEE Transactions on Medical Imaging.

[40]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[41]  M. Ng,et al.  The Convex Relaxation Method on Deconvolution Model withMultiplicative Noise , 2013 .

[42]  Emmanuel J. Candès,et al.  New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction , 2002, Signal Process..

[43]  Wangmeng Zuo,et al.  A Generalized Accelerated Proximal Gradient Approach for Total-Variation-Based Image Restoration , 2011, IEEE Transactions on Image Processing.

[44]  Rob Fergus,et al.  Blind deconvolution using a normalized sparsity measure , 2011, CVPR 2011.

[45]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[46]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[47]  Raymond H. Chan,et al.  Multilevel algorithm for a Poisson noise removal model with total-variation regularization , 2007 .

[48]  Guillermo Sapiro,et al.  Non-local sparse models for image restoration , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[49]  F. Malgouyres,et al.  Mathematical analysis of a model which combines total variation and wavelet for image restoration 1 , 2002 .

[50]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[51]  José M. Bioucas-Dias,et al.  Fast Image Recovery Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.

[52]  Sylvain Paris,et al.  Blur kernel estimation using the radon transform , 2011, CVPR 2011.

[53]  Tieyong Zeng,et al.  Poisson noise removal via learned dictionary , 2010, 2010 IEEE International Conference on Image Processing.

[54]  Gabriele Steidl,et al.  Deblurring Poissonian images by split Bregman techniques , 2010, J. Vis. Commun. Image Represent..

[55]  Tieyong Zeng,et al.  A Convex Variational Model for Restoring Blurred Images with Multiplicative Noise , 2013, SIAM J. Imaging Sci..

[56]  Gabriele Steidl,et al.  Removing Multiplicative Noise by Douglas-Rachford Splitting Methods , 2010, Journal of Mathematical Imaging and Vision.

[57]  Mohamed-Jalal Fadili,et al.  Multiplicative Noise Removal Using L1 Fidelity on Frame Coefficients , 2008, Journal of Mathematical Imaging and Vision.

[58]  Wiro J. Niessen,et al.  Selective Deblurring for Improved Calcification Visualization and Quantification in Carotid CT Angiography: Validation Using Micro-CT , 2009, IEEE Transactions on Medical Imaging.

[59]  Mohamed-Jalal Fadili,et al.  Wavelets, Ridgelets, and Curvelets for Poisson Noise Removal , 2008, IEEE Transactions on Image Processing.

[60]  Alessandro Foi,et al.  Optimal Inversion of the Generalized Anscombe Transformation for Poisson-Gaussian Noise , 2013, IEEE Transactions on Image Processing.

[61]  Antonin Chambolle,et al.  Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage , 1998, IEEE Trans. Image Process..

[62]  William T. Freeman,et al.  Removing camera shake from a single photograph , 2006, SIGGRAPH 2006.

[63]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[64]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[65]  Ge Wang,et al.  Spiral CT image deblurring for cochlear implantation , 1998, IEEE Transactions on Medical Imaging.

[66]  José M. Bioucas-Dias,et al.  Restoration of Poissonian Images Using Alternating Direction Optimization , 2010, IEEE Transactions on Image Processing.

[67]  Yair Weiss,et al.  From learning models of natural image patches to whole image restoration , 2011, 2011 International Conference on Computer Vision.

[68]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[69]  Thomas J. Asaki,et al.  A Variational Approach to Reconstructing Images Corrupted by Poisson Noise , 2007, Journal of Mathematical Imaging and Vision.