MCMC Estimation of Multi‐locus Genome Sharing and Multipoint Gene Location Scores

Effective linkage detection and gene mapping requires analysis of data jointly on members of extended pedigrees, jointly at multiple genetic markers. Exact likelihood computation is then often infeasible, but Markov chain Monte Carlo (MCMC) methods permit estimation of posterior probabilities of genome sharing among relatives, conditional upon marker data. In principle, MCMC also permits estimation of linkage analysis location score curves, but in practice effective MCMC samplers are hard to find. Although the whole‐meiosis Gibbs sampler (M‐sampler) performs well in some cases, for extended pedigrees and tightly linked markers better samplers are needed. However, using the M‐sampler as a proposal distribution in a Metropolis‐Hastings algorithm does allow genetic interference to be incorporated into the analysis. La detection efficace de liaisons et la cartographie genique suppose l'analyse simultanee de donnees provenant de membre de lignees, etendues, cela pour plusieurs marqueurs genetiques. Un calcul de vraisemblance exact est souvent impossible, mais une methode de Monte‐Carlo par chaines de Markov permet I'estimation de probabilites a posteriori conditionnelles probabilite qu' une partie de genomesoit commune a deux parents, sachant quels marqueurs genetiques; les caracterisent, La methode permet aussi en principe d' estimer les courbes de score pour les differentes positions de liaisons, mains en partique, un echantillonneur efficace estdifficile a obtenir. Bien que I' echantilonneur de Gibbs pour la meiose, complete done de bons resultats dans certains cas, pour des lignees etendues et des marqueurs etroitement liees, de meillecures procedures, d'echantillonnage sont necessaires. Toutefois, utiliser un echantillonneur de Gibbs comme proposition (distribution initiale)dans un algorithme de Metropolis‐Hastings permet de prendre en complete les interferences, genetiques dans l'analyse.

[1]  E A Thompson,et al.  Gene identities and multiple relationships. , 1974, Biometrics.

[2]  E. Thompson,et al.  Estimation of conditional multilocus gene identity among relatives , 1999 .

[3]  K Lange,et al.  Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. , 1996, American journal of human genetics.

[4]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[5]  L. Baum,et al.  An inequality and associated maximization technique in statistical estimation of probabilistic functions of a Markov process , 1972 .

[6]  S. Heath Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. , 1997, American journal of human genetics.

[7]  T. Speed What is a genetic map function , 1996 .

[8]  E Sturt,et al.  A mapping function for human chromosomes , 1976, Annals of human genetics.

[9]  K. P. Donnelly,et al.  The probability that related individuals share some section of genome identical by descent. , 1983, Theoretical population biology.

[10]  E M Wijsman,et al.  Toward localization of the Werner syndrome gene by linkage disequilibrium and ancestral haplotyping: lessons learned from analysis of 35 chromosome 8p11.1-21.1 markers. , 1996, American journal of human genetics.

[11]  L Kruglyak,et al.  Parametric and nonparametric linkage analysis: a unified multipoint approach. , 1996, American journal of human genetics.

[12]  E. Wijsman,et al.  Genetic analysis of simulated oligogenic traits in nuclear and extended pedigrees: Summary of GAW10 contributions , 1997, Genetic epidemiology.

[13]  S Lin,et al.  Incorporating crossover interference into pedigree analysis using the chi 2 model. , 1996, Human heredity.

[14]  E. Remmers,et al.  Localization of the gene responsible for the op (osteopetrotic) defect in rats on chromosome 10 , 1996, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[15]  D E Weeks,et al.  Multipoint mapping under genetic interference. , 1993, Human heredity.

[16]  R. Elston,et al.  A general model for the genetic analysis of pedigree data. , 1971, Human heredity.

[17]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[18]  T. Speed,et al.  Statistical analysis of crossover interference using the chi-square model. , 1995, Genetics.

[19]  E A Thompson,et al.  Evaluation of likelihood ratios for complex genetic models. , 1991, IMA journal of mathematics applied in medicine and biology.

[20]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[21]  E. A. Thompson,et al.  Genetic linkage in the estimation of pairwise relationship , 1998, Theoretical and Applied Genetics.

[22]  C. Geyer,et al.  Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .

[23]  E. Thompson Monte Carlo Likelihood in Genetic Mapping , 1994 .

[24]  S Karlin,et al.  Theoretical models of genetic map functions. , 1984, Theoretical population biology.

[25]  Eric S. Lander,et al.  Faster Multipoint Linkage Analysis Using Fourier Transforms , 1998, J. Comput. Biol..

[26]  E. Lander,et al.  Construction of multilocus genetic linkage maps in humans. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[27]  D. D. Kosambi The estimation of map distances from recombination values. , 1943 .