Polarimetric Synthetic Aperture Radar Data and the Complex Wishart Distribution

When working with multi-look fully polarimetric synthetic aperture radar (SAR) data an appropriate way of representing the back-scattered signal consists of the so-callad covariance matrix. for each pixel this is a 3×3 Hermifian, positive definite matrix which follows a complex Wishart distribution. Based on this distribution a test statistic for equality of two such matrices and an associated asymptotic probability for obtaining a smaller value of the test statistic are given and applied to segmentation change detection and edge detection in polarimetric SAR data. In a case study EMISAR L-bared data from 17 April 1998 and 20 May 1998 covering agricultural fields near Foulum Denmark, are used.

[1]  J. Schou,et al.  Change detection of small objects and linear features in multi-temporal polarimetric images , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[2]  Fuk K. Li,et al.  Symmetry properties in polarimetric remote sensing , 1992 .

[3]  A. Lopes,et al.  A statistical and geometrical edge detector for SAR images , 1988 .

[4]  F. Ulaby,et al.  Radar polarimetry for geoscience applications , 1990 .

[5]  Rod Cook,et al.  MUM (Merge Using Moments) segmentation for SAR images , 1994, Remote Sensing.

[6]  Knut Conradsen,et al.  Polarimetric edge detector based on the complex Wishart distribution , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[7]  Jesper Schou Feature Extraction for Topographic Mapping , 2001 .

[8]  Knut Conradsen,et al.  A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data , 2003, IEEE Trans. Geosci. Remote. Sens..

[9]  J. Dymond How accurately do image classifiers estimate area , 1992 .

[10]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[11]  Henning Skriver,et al.  Multitemporal C- and L-band polarimetric signatures of crops , 1999, IEEE Trans. Geosci. Remote. Sens..

[12]  Wolfgang Dierking,et al.  Change detection for thematic mapping by means of airborne multitemporal polarimetric SAR imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[13]  E. Nezry,et al.  Structure detection and statistical adaptive speckle filtering in SAR images , 1993 .

[14]  Knut Conradsen,et al.  Evaluation of the Wishart test statistics for polarimetric SAR data , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[15]  H. Skriver,et al.  Change detection in polarimetric SAR data and the complex Wishart distribution , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[16]  Knut Conradsen,et al.  Polarimetric segmentation using Wishart test statistic , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[17]  Søren Nørvang Madsen,et al.  The Danish SAR system: design and initial tests , 1991, IEEE Trans. Geosci. Remote. Sens..

[18]  Knut Conradsen,et al.  CFAR edge detector for polarimetric SAR images , 2003, IEEE Trans. Geosci. Remote. Sens..

[19]  Søren Nørvang Madsen,et al.  EMISAR: an absolutely calibrated polarimetric L- and C-band SAR , 1998, IEEE Trans. Geosci. Remote. Sens..