INSIGHT INTO THE FORMATION OF THE MILKY WAY THROUGH COLD HALO SUBSTRUCTURE. III. STATISTICAL CHEMICAL TAGGING IN THE SMOOTH HALO

We find that the relative contribution of satellite galaxies accreted at high redshift to the stellar population of the Milky Way's smooth halo increases with distance, becoming observable relative to the classical smooth halo about 15 kpc from the Galactic center. In particular, we determine line-of-sight-averaged [Fe/H] and [α/Fe] in the metal-poor main-sequence turnoff (MPMSTO) population along every Sloan Extension for Galactic Understanding and Exploration (SEGUE) spectroscopic line of sight. Restricting our sample to those lines of sight along which we do not detect elements of cold halo substructure (ECHOS), we compile the largest spectroscopic sample of stars in the smooth component of the halo ever observed in situ beyond 10 kpc. We find significant spatial autocorrelation in [Fe/H] in the MPMSTO population in the distant half of our sample beyond about 15 kpc from the Galactic center. Inside of 15 kpc however, we find no significant spatial autocorrelation in [Fe/H]. At the same time, we perform SEGUE-like observations of N-body simulations of Milky Way analog formation. While we find that halos formed entirely by accreted satellite galaxies provide a poor match to our observations of the halo within 15 kpc of the Galactic center, we do observe spatial autocorrelation in [Fe/H] in the simulations at larger distances. This observation is an example of statistical chemical tagging and indicates that spatial autocorrelation in metallicity is a generic feature of stellar halos formed from accreted satellite galaxies.

[1]  P. Madau,et al.  ON THE ASSEMBLY OF THE MILKY WAY DWARF SATELLITES AND THEIR COMMON MASS SCALE , 2011, 1106.5583.

[2]  D. York,et al.  THE CASE FOR THE DUAL HALO OF THE MILKY WAY , 2011, 1104.2513.

[3]  T. Beers,et al.  CARBON-ENHANCED METAL-POOR STARS IN THE INNER AND OUTER HALO COMPONENTS OF THE MILKY WAY , 2011, 1103.3067.

[4]  J. Schaye,et al.  Global structure and kinematics of stellar haloes in cosmological hydrodynamic simulations , 2011, 1111.1747.

[5]  Garching,et al.  Chemical signatures of formation processes in the stellar populations of simulated galaxies , 2011, 1110.5864.

[6]  E. Tollerud,et al.  The Sagittarius impact as an architect of spirality and outer rings in the Milky Way , 2011, Nature.

[7]  T. Beers,et al.  INSIGHT INTO THE FORMATION OF THE MILKY WAY THROUGH COLD HALO SUBSTRUCTURE. II. THE ELEMENTAL ABUNDANCES OF ECHOS , 2011, 1104.1424.

[8]  Claudio Dalla Vecchia,et al.  Cosmological simulations of the formation of the stellar haloes around disc galaxies , 2011, 1102.2526.

[9]  A. Helmi,et al.  SUBSTRUCTURE IN THE STELLAR HALOS OF THE AQUARIUS SIMULATIONS , 2011, 1101.2544.

[10]  G. Raskin,et al.  Chemically tagging the Hyades stream: does it partly originate from the Hyades cluster? , 2011, 1101.2583.

[11]  J. Simon,et al.  MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. III. METALLICITY DISTRIBUTIONS OF MILKY WAY DWARF SATELLITE GALAXIES , 2010, 1011.4937.

[12]  S. Majewski,et al.  MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. IV. ALPHA ELEMENT DISTRIBUTIONS IN MILKY WAY SATELLITE GALAXIES , 2010, 1011.5221.

[13]  S. Majewski,et al.  MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. II. CATALOG OF STARS IN MILKY WAY DWARF SATELLITE GALAXIES , 2010, 1011.4516.

[14]  Ž. Ivezić,et al.  THE SHAPE AND PROFILE OF THE MILKY WAY HALO AS SEEN BY THE CANADA–FRANCE–HAWAII TELESCOPE LEGACY SURVEY , 2010, 1011.4487.

[15]  Sergey E. Koposov,et al.  QUANTIFYING KINEMATIC SUBSTRUCTURE IN THE MILKY WAY'S STELLAR HALO , 2010, 1011.1925.

[16]  David K. Lai,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. V. ESTIMATION OF ALPHA-ELEMENT ABUNDANCE RATIOS FROM LOW-RESOLUTION SDSS/SEGUE STELLAR SPECTRA , 2010, 1010.2934.

[17]  S. White,et al.  Bound and unbound substructures in Galaxy-scale Dark Matter haloes , 2010, 1010.2491.

[18]  T. Beers,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. IV. VALIDATION WITH AN EXTENDED SAMPLE OF GALACTIC GLOBULAR AND OPEN CLUSTERS , 2010, 1008.1959.

[19]  E. Bubar,et al.  SPECTROSCOPIC ABUNDANCES AND MEMBERSHIP IN THE WOLF 630 MOVING GROUP , 2010, 1005.1205.

[20]  D. Hogg,et al.  THE DUAL ORIGIN OF STELLAR HALOS. II. CHEMICAL ABUNDANCES AS TRACERS OF FORMATION HISTORY , 2010, 1004.3789.

[21]  Ken Freeman,et al.  THE LONG-TERM EVOLUTION OF THE GALACTIC DISK TRACED BY DISSOLVING STAR CLUSTERS , 2010, 1002.4357.

[22]  J. Bullock,et al.  Heated disc stars in the stellar halo , 2009, 0910.5481.

[23]  H. Rix,et al.  MAPPING THE STELLAR STRUCTURE OF THE MILKY WAY THICK DISK AND HALO USING SEGUE PHOTOMETRY , 2009, 0911.3900.

[24]  A. Helmi,et al.  Galactic stellar haloes in the CDM model , 2009, 0910.3211.

[25]  Ž. Ivezić,et al.  STRUCTURE AND KINEMATICS OF THE STELLAR HALOS AND THICK DISKS OF THE MILKY WAY BASED ON CALIBRATION STARS FROM SLOAN DIGITAL SKY SURVEY DR7 , 2009, 0909.3019.

[26]  C. Prieto,et al.  INSIGHT INTO THE FORMATION OF THE MILKY WAY THROUGH COLD HALO SUBSTRUCTURE. I. THE ECHOS OF MILKY WAY FORMATION , 2009, 0908.2627.

[27]  T. Beers,et al.  A PHOTOMETRIC METALLICITY ESTIMATE OF THE VIRGO STELLAR OVERDENSITY , 2009, 0907.1082.

[28]  Heidelberg,et al.  Substructure revealed by RR Lyraes in SDSS Stripe 82 , 2009, 0906.0498.

[29]  C. Allende Prieto,et al.  HALO STREAMS IN THE SEVENTH SLOAN DIGITAL SKY SURVEY DATA RELEASE , 2009 .

[30]  C. Brook,et al.  THE DUAL ORIGIN OF STELLAR HALOS , 2009, 0904.3333.

[31]  H. Rix,et al.  Halo streams in the 7th SDSS data release , 2009, 0904.1003.

[32]  Heidelberg,et al.  Kinematics of SDSS subdwarfs: structure and substructure of the Milky Way halo , 2009, 0904.1012.

[33]  Hugo van Woerden,et al.  MAPPING THE GALACTIC HALO. VIII. QUANTIFYING SUBSTRUCTURE , 2009, 0903.3043.

[34]  V. Debattista,et al.  COLD DARK MATTER SUBSTRUCTURE AND GALACTIC DISKS. II. DYNAMICAL EFFECTS OF HIERARCHICAL SATELLITE ACCRETION , 2009, 0902.1983.

[35]  Heidi Jo Newberg,et al.  SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH g = 14–20 , 2009, 0902.1781.

[36]  L. Widrow,et al.  The graininess of dark matter haloes , 2008, 0812.2033.

[37]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[38]  C. Grillmair FOUR NEW STELLAR DEBRIS STREAMS IN THE GALACTIC HALO , 2008, 0811.3965.

[39]  J. Stadel,et al.  Fossil Remnants of Reionization in the Halo of the Milky Way , 2008, 0810.3712.

[40]  D. York,et al.  Galactic Globular and Open Clusters in the Sloan Digital Sky Survey. I. Crowded-Field Photometry and Cluster Fiducial Sequences in ugriz , 2008, 0808.0001.

[41]  H. Rix,et al.  Identifying Stellar Streams in the First RAVE Public Data Release , 2008, 0805.2954.

[42]  J. Stadel,et al.  Clumps and streams in the local dark matter distribution , 2008, Nature.

[43]  Mamoru Doi,et al.  The Milky Way Tomography with SDSS. II. Stellar Metallicity , 2008, 0804.3850.

[44]  B. Yanny,et al.  Submitted for publication in the Astronomical Journal The SEGUE Stellar Parameter Pipeline. III. Comparison with High-Resolution Spectroscopy of SDSS/SEGUE Field Stars 1 , 2022 .

[45]  Australian National University,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. II. VALIDATION WITH GALACTIC GLOBULAR AND OPEN CLUSTERS , 2007, 0710.5778.

[46]  B. Gibson,et al.  Is the sky falling? Searching for stellar streams in the local Milky Way disc in the CORAVEL and RAVE surveys , 2007, 0709.4219.

[47]  L. Moustakas,et al.  Cold Dark Matter Substructure and Galactic Disks. I. Morphological Signatures of Hierarchical Satellite Accretion , 2007, 0708.1949.

[48]  Zeljko Ivezic,et al.  The Accretion Origin of the Milky Way’s Stellar Halo , 2007, 0706.0004.

[49]  S. Roweis,et al.  An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.

[50]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[51]  J. Bullock,et al.  Λ Cold Dark Matter, Stellar Feedback, and the Galactic Halo Abundance Pattern , 2008 .

[52]  Australian National University,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. I. DESCRIPTION AND COMPARISON OF INDIVIDUAL METHODS , 2007, 0710.5645.

[53]  A. Helmi,et al.  Halo Star Streams in the Solar Neighborhood , 2007, 0707.4477.

[54]  D. York,et al.  Two stellar components in the halo of the Milky Way , 2007, Nature.

[55]  Mamoru Doi,et al.  Exploring the Variable Sky with the Sloan Digital Sky Survey , 2007, 0704.0655.

[56]  M. Asplund,et al.  Chemical Homogeneity in Collinder 261 and Implications for Chemical Tagging , 2006, astro-ph/0611832.

[57]  K. Freeman,et al.  Chemically Tagging the HR 1614 Moving Group , 2006, astro-ph/0610041.

[58]  D. York,et al.  An Orphan in the “Field of Streams” , 2006, astro-ph/0605705.

[59]  Jr.,et al.  The Sloan Digital Sky Survey monitor telescope pipeline , 2006, astro-ph/0608575.

[60]  Princeton,et al.  The Field of Streams: Sagittarius and Its Siblings , 2006, astro-ph/0605025.

[61]  A. K. Vivas,et al.  The QUEST RR Lyrae Survey. II. The Halo Overdensities in the First Catalog , 2006, astro-ph/0604359.

[62]  C. Grillmair,et al.  Detection of a 63° Cold Stellar Stream in the Sloan Digital Sky Survey , 2006, astro-ph/0604332.

[63]  C. J. Grillmair,et al.  The Detection of a 45° Tidal Stream Associated with the Globular Cluster NGC 5466 , 2006, astro-ph/0602602.

[64]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[65]  Mark I. Wilkinson,et al.  The Discovery of Tidal Tails around the Globular Cluster NGC 5466 , 2006 .

[66]  B. Yanny,et al.  A Spectroscopic Study of the Ancient Milky Way: F- and G-Type Stars in the Third Data Release of the Sloan Digital Sky Survey , 2005, astro-ph/0509812.

[67]  K. Freeman,et al.  Chemical Homogeneity in the Hyades , 2005, astro-ph/0509241.

[68]  B. Robertson,et al.  Chemical Abundance Distributions of Galactic Halos and Their Satellite Systems in a ΛCDM Universe , 2005, astro-ph/0507114.

[69]  B. Robertson,et al.  Phase-Space Distributions of Chemical Abundances in Milky Way-Type Galaxy Halos , 2005, astro-ph/0512611.

[70]  Mark I. Wilkinson,et al.  The Discovery of Tidal Tails Around NGC 5466 , 2005, astro-ph/0511767.

[71]  G. Carraro,et al.  Spectroscopy of QUEST RR Lyrae Variables: The New Virgo Stellar Stream , 2005, astro-ph/0510589.

[72]  J. Bullock,et al.  Tracing Galaxy Formation with Stellar Halos. I. Methods , 2005, astro-ph/0506467.

[73]  P. Diggle Applied Spatial Statistics for Public Health Data , 2005 .

[74]  Lars Hernquist,et al.  Λ Cold Dark Matter, Stellar Feedback, and the Galactic Halo Abundance Pattern , 2005, astro-ph/0501398.

[75]  A. Szalay,et al.  SDSS data management and photometric quality assessment , 2004, astro-ph/0410195.

[76]  L. Waller,et al.  Applied Spatial Statistics for Public Health Data: Waller/Applied Spatial Statistics , 2004 .

[77]  E. Tolstoy,et al.  Stellar Chemical Signatures and Hierarchical Galaxy Formation , 2004, astro-ph/0406120.

[78]  S. Majewski,et al.  Exploring Halo Substructure with Giant Stars: A Diffuse Star Cloud or Tidal Debris around the Milky Way in Triangulum-Andromeda , 2004, astro-ph/0405437.

[79]  Thomas Bensby,et al.  Elemental abundance trends in the Galactic thin and thick disks as traced by nearby F and G dwarf stars , 2003 .

[80]  M. F. Skrutskie,et al.  A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius Core and Tidal Arms , 2003, astro-ph/0304198.

[81]  D. Lamb,et al.  A Low-Latitude Halo Stream around the Milky Way , 2003, astro-ph/0301029.

[82]  C. Prieto,et al.  The chemical compositions of Galactic disc F and G dwarfs , 2002, astro-ph/0211551.

[83]  Ž. Ivezić,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[84]  John E. Norris,et al.  Deciphering the Last Major Invasion of the Milky Way , 2002, astro-ph/0207106.

[85]  Walter Dehnen,et al.  A Matched-Filter Analysis of the Tidal Tails of the Globular Cluster Palomar 5 , 2002 .

[86]  Kazuhiro Shimasaku,et al.  The ugriz Standard-Star System , 2002 .

[87]  A. Boesgaard,et al.  Abundances from High-Resolution Spectra of Kinematically Interesting Halo Stars , 2002 .

[88]  D. York,et al.  The u'g'r'i'z' Standard Star Network , 2002, astro-ph/0201143.

[89]  Heather A. Rave,et al.  The Ghost of Sagittarius and Lumps in the Halo of the Milky Way , 2001, astro-ph/0111095.

[90]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[91]  A. K. Vivas,et al.  The QUEST RR Lyrae Survey: Confirmation of the Clump at 50 Kiloparsecs and Other Overdensities in the Outer Halo , 2001, astro-ph/0105135.

[92]  E. K. Grebel,et al.  Detection of Massive Tidal Tails around the Globular Cluster Palomar 5 with Sloan Digital Sky Survey Commissioning Data , 2000, astro-ph/0012311.

[93]  J. Prochaska,et al.  The Galactic Thick Disk Stellar Abundances , 2000, astro-ph/0008075.

[94]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[95]  J. Fulbright Abundances and Kinematics of Field Halo and Disk Stars. I. Observational Data and Abundance Analysis , 2000, astro-ph/0006260.

[96]  D. York,et al.  Identification of A-colored Stars and Structure in the Halo of the Milky Way from Sloan Digital Sky Survey Commissioning Data , 2000, astro-ph/0004128.

[97]  Z. Ivezic,et al.  Candidate RR Lyrae Stars Found in Sloan Digital Sky Survey Commissioning Data , 2000, astro-ph/0004130.

[98]  T. Beers,et al.  Kinematics of Metal-poor Stars in the Galaxy. III. Formation of the Stellar Halo and Thick Disk as Revealed from a Large Sample of Nonkinematically Selected Stars , 2000, astro-ph/0003087.

[99]  P. T. de Zeeuw,et al.  Debris streams in the solar neighbourhood as relicts from the formation of the Milky Way , 1999, Nature.

[100]  M. Mateo DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[101]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[102]  C. Sneden,et al.  On the Use of [Na/Fe] and [α/Fe] Ratios and Hipparcos-based (U, V, W) Velocities as Age Indicators among Low-Metallicity Halo Field Giants , 1998 .

[103]  M. Irwin,et al.  The APM survey for cool carbon stars in the Galactic halo – I , 1998, astro-ph/0001113.

[104]  Y. Yoshii,et al.  Early Evolution of the Galactic Halo Revealed from Hipparcos Observations of Metal-poor Stars , 1997, astro-ph/9710151.

[105]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[106]  S. Hawley,et al.  Absolute Proper Motions to B ~ 22.5: Large-Scale Streaming Motions and the Structure and Origin of the Galactic Halo , 1996 .

[107]  S. Ryan,et al.  Subdwarf studies. II - Abundances and kinematics from medium resolution spectra. III - The halo metallicity distribution , 1991 .

[108]  S. Ryan,et al.  Subdwarf studies. III, The halo metallicity distribution , 1991 .

[109]  Eric Renshaw,et al.  Spatial Processes: Models and Applications , 1981 .

[110]  P. Moran Notes on continuous stochastic phenomena. , 1950, Biometrika.