The EU programme for modelling radiation effects in fusion reactor materials: An overview of recent advances and future goals

The EU fusion materials modelling programme was initiated in 2002 with the objective of developing a comprehensive set of computer modelling techniques and approaches, aimed at rationalising the extensive available experimental information on properties of irradiated fusion materials, developing capabilities for predicting the behaviour of materials under conditions not yet accessible to experimental tests, assessing results of tests involving high dose rates, and extrapolating these results to the fusion-relevant conditions. The programme presently gives emphasis to modelling a single class of materials, which are ferritic-martensitic EUROFER-type steels, and focuses on the investigation of key physical phenomena and interpretation of experimental observations. The objective of the programme is the development of computational capabilities for predicting changes in mechanical properties, hardening and embrittlement, as well as changes in the microstructure and phase stability of EUROFER and FeCr model alloys occurring under fusion reactor relevant irradiation conditions.

[1]  C. J. Ortiz,et al.  Helium and point defect accumulation: (ii) kinetic modelling , 2008 .

[2]  Peter Jung,et al.  Effect of implanted helium on tensile properties and hardness of 9% Cr martensitic stainless steels , 2003 .

[3]  John L. Campbell,et al.  Positron trapping and self-diffusion activation energies in chromium , 1979 .

[4]  N. Boukos,et al.  Structural, thermal, electrical and magnetic properties of Eurofer 97 steel , 2008 .

[5]  Peter M. Derlet,et al.  The magnetic origin of anomalous high-temperature stability of dislocation loops in iron and iron-based alloys , 2009 .

[6]  S. Pellegrino,et al.  JANNUS: experimental validation at the scale of atomic modelling , 2008 .

[7]  Stephen Roberts,et al.  An empirical correlation between temperature and activation energy for brittle-to-ductile transitions in single-phase materials , 2007 .

[8]  Lorenzo Malerba,et al.  Dimensionality of interstitial cluster motion in bcc-Fe , 2007 .

[9]  Graeme Ackland,et al.  Development of an interatomic potential for phosphorus impurities in α-iron , 2004 .

[10]  E. Diegele,et al.  Modelling irradiation effects in fusion materials , 2007 .

[11]  F. Willaime,et al.  Ab initio study of helium in α-Fe : Dissolution, migration, and clustering with vacancies , 2005 .

[12]  Peter M. Derlet,et al.  Interatomic potentials for materials with interacting electrons , 2007 .

[13]  Andrew P. Horsfield,et al.  Self-interstitial atom defects in bcc transition metals: Group-specific trends , 2006 .

[14]  Masayoshi Sugimoto,et al.  IFMIF accelerator facility , 2004 .

[15]  H. Hasegawa,et al.  A calculation of elastic constants of ferromagnetic iron at finite temperatures , 1985 .

[16]  Ralf Drautz,et al.  Valence-dependent analytic bond-order potential for transition metals , 2006 .

[17]  N. Baluc,et al.  Radiation damage in ferritic/martensitic steels for fusion reactors: a simulation point of view , 2007 .

[18]  A. Brownhill.,et al.  Performance study of non-contact surface measurement technology for use in an experimental fusion device , 2009, 2009 23rd IEEE/NPSS Symposium on Fusion Engineering.

[19]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[20]  Janne Wallenius,et al.  Simulation of threshold displacement energies in FeCr , 2007 .

[21]  Marc Fivel,et al.  The glide of screw dislocations in bcc Fe: Atomistic static and dynamic simulations ☆ , 2006 .

[22]  C. J. Ortiz,et al.  He diffusion in irradiated α-Fe : An ab-initio-based rate theory model , 2007 .

[23]  Ralf Drautz,et al.  Monte Carlo study of thermodynamic properties and clustering in the bcc Fe-Cr system , 2007 .

[24]  Jet Efda Contributors,et al.  New developments at JET in diagnostics, real-time control, data acquisition and information retrieval with potential application to ITER , 2009 .

[25]  Robin Schäublin,et al.  Synergistic effects of PKA and helium on primary damage formation in Fe-0.1%He , 2007 .

[26]  F. Willaime,et al.  First principles calculations in iron: structure and mobility of defect clusters and defect complexes for kinetic modelling , 2008 .

[27]  L. Malerba,et al.  Molecular dynamics simulation of displacement cascades in α-Fe: A critical review , 2006 .

[28]  Duc Nguyen-Manh Ab-Initio Modelling of Point Defect-Impurity Interaction in Tungsten and other BCC Transition Metals , 2008 .

[29]  Toby S. Hudson,et al.  Confinement of interstitial cluster diffusion by oversized solute atoms , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  Alfredo Caro,et al.  Implications of ab initio energetics on the thermodynamics of Fe–Cr alloys , 2006 .

[31]  Andrew G. Glen,et al.  APPL , 2001 .

[32]  Janne Wallenius,et al.  Electronic origin of the anomalous stability of Fe-rich bcc Fe-Cr alloys , 2006 .

[33]  Lorenzo Malerba,et al.  On the migration and trapping of single self-interstitial atoms in dilute and concentrated Fe–Cr alloys: Atomistic study and comparison with resistivity recovery experiments , 2008 .

[34]  Janne Wallenius,et al.  Displacement cascades in Fe–Cr: A molecular dynamics study , 2006 .

[35]  Brian D. Wirth,et al.  Self-interstitial transport in vanadium , 2005 .

[36]  F. Willaime,et al.  Atomistic simulation of single kinks of screw dislocations in α-Fe , 2009 .

[37]  A. L. Nikolaev,et al.  Specificity of stage III in electron-irradiated Fe-Cr alloys , 2007 .

[38]  L. Malerba,et al.  Effect of Cr atoms on the formation of double kinks in screw dislocations in Fe and its correlation with solute hardening and softening in Fe–Cr alloys , 2008 .

[39]  Angus J. Wilkinson,et al.  Brittle–ductile transitions in vanadium and iron–chromium , 2007 .

[40]  C. Domain,et al.  Ab initio calculations of defects in Fe and dilute Fe-Cu alloys , 2001 .

[41]  E. Ivings,et al.  Measurement of disruption forces in JET using fiber-optic sensors , 2009, 2009 23rd IEEE/NPSS Symposium on Fusion Engineering.

[42]  Y. Carlan,et al.  A SANS investigation of the irradiation-enhanced α–α′ phases separation in 7–12 Cr martensitic steels , 2003 .

[43]  E. Wigner The Unreasonable Effectiveness of Mathematics in the Natural Sciences (reprint) , 1960 .

[44]  Lorenzo Malerba,et al.  Simulation of displacement cascades in Fe90Cr10 using a two band model potential , 2008 .

[45]  Lorenzo Malerba,et al.  Characterization of dislocation loops and chromium-rich precipitates in ferritic iron-chromium alloys as means of void swelling suppression , 2007 .

[46]  Robin Schäublin,et al.  Effect of helium on irradiation-induced hardening of iron: A simulation point of view , 2007 .

[47]  S. Dudarev,et al.  The non-Arrhenius migration of interstitial defects in bcc transition metals , 2008 .

[48]  Carolina Björkas,et al.  Comparative study of cascade damage in Fe simulated with recent potentials , 2007 .

[49]  D Nguyen-Manh,et al.  Peierls potential for crowdions in the bcc transition metals. , 2008, Physical review letters.

[50]  Peter M. Derlet,et al.  Million-atom molecular dynamics simulations of magnetic iron , 2007 .

[51]  Peter M. Derlet,et al.  Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals , 2007 .

[52]  Graeme Ackland,et al.  Self-interstitials in V and Mo , 2002 .

[53]  S.L. Dudarev,et al.  The non-degenerate core structure of a ½⟨111⟩ screw dislocation in bcc transition metals modelled using Finnis–Sinclair potentials: The necessary and sufficient conditions , 2009 .

[54]  Gerald Pintsuk,et al.  First Demonstration of Non-Destructive Tests on Tungsten-Coated JET Divertor CFC Tiles in the Electron Beam Facility JUDITH 2 , 2009 .

[55]  M. Porkolab,et al.  Radio frequency power in plasmas , 1994 .

[56]  Wolfgang Hoffelner,et al.  Discrete dislocation dynamics simulations of dislocation interactions with Y 2 O 3 particles in PM2000 single crystals , 2007 .

[57]  R. A. Forrest,et al.  Immobilization of interstitial loops by substitutional alloy and transmutation atoms in irradiated metals , 2004 .

[58]  G. M. Stocks,et al.  Magnetic interactions influence the properties of helium defects in iron. , 2005, Physical review letters.

[59]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[60]  Janne Wallenius,et al.  Ab initio study of Cr interactions with point defects in bcc Fe , 2007 .

[61]  Alain Barbu,et al.  Multiscale modelling of defect kinetics in irradiated iron , 2004 .

[62]  P. C. de Vries,et al.  Development of a steady-state scenario in JET with d imensionless parameters approaching ITER target values , 2009 .

[63]  R. Braun,et al.  Diffusion of Chromium in α-Iron , 1985, August 16.

[64]  Lisa Ventelon,et al.  Core structure and Peierls potential of screw dislocations in α-Fe from first principles: cluster versus dipole approaches , 2007 .

[65]  Hirotaro Mori,et al.  Observation of the One-Dimensional Diffusion of Nanometer-Sized Dislocation Loops , 2007, Science.

[66]  Lorenzo Malerba,et al.  The effect of temperature and strain rate on the interaction between an edge dislocation and an interstitial dislocation loop in α-iron , 2007 .

[67]  Roberto Car,et al.  Strongly Non-Arrhenius Self-Interstitial Diffusion in Vanadium , 2004 .

[68]  Sergei L. Dudarev,et al.  Dislocation pile-ups in Fe at high temperature , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[69]  Andrew P. Horsfield,et al.  Systematic group-specific trends for point defects in bcc transition metals: An ab initio study , 2007 .

[70]  Stephen Roberts,et al.  The brittle-ductile transition in silicon. II. Interpretation , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[71]  Francois Willaime,et al.  Electronic structure calculations of vacancy parameters in transition metals: Impact on the bcc self-diffusion anomaly , 2000 .

[72]  Peter Jung,et al.  Microstructural analysis of 9% Cr martensitic steels containing 0.5 at.% helium , 2003 .

[73]  Janne Wallenius,et al.  Modeling of chromium precipitation in Fe-Cr alloys , 2004 .

[74]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[75]  Lorenzo Malerba,et al.  Identification and characterization of Cr-rich precipitates in FeCr alloys: An atomistic study , 2008 .

[76]  Duc Nguyen-Manh,et al.  Magnetic cluster expansion simulations of FeCr alloys , 2009 .

[77]  Janne Wallenius,et al.  Simulation of thermal ageing and radiation damage in Fe–Cr , 2007 .

[78]  Sergei L. Dudarev,et al.  Interaction between dislocations in bcc iron at high temperature , 2009 .

[79]  J. Wallenius,et al.  Ab initio formation energies of Fe-Cr alloys , 2003 .

[80]  Journal of Computer-Aided Materials Design , 2005 .

[81]  J. Foct,et al.  Ab initio study of foreign interstitial atom (C, N) interactions with intrinsic point defects in α-Fe , 2004 .

[82]  E. Nardon,et al.  Characterization of Scrape-Off Layer profiles and tr ansport processes in MAST in the presence of Resonant Magnetic Perturbations , 2009 .

[83]  Chu-Chun Fu,et al.  Stability and mobility of mono- and di-interstitials in alpha-Fe. , 2004, Physical review letters.

[84]  Ralf Drautz,et al.  Magnetism and thermodynamics of defect-free Fe-Cr alloys , 2006 .

[85]  Stephen Roberts,et al.  The brittle–ductile transition in single-crystal iron , 2008 .

[86]  Peter M. Derlet,et al.  A ‘magnetic’ interatomic potential for molecular dynamics simulations , 2005 .

[87]  C. J. Ortiz,et al.  Simulation of defect evolution in irradiated materials: Role of intracascade clustering and correlated recombination , 2007 .

[88]  Brian D. Wirth,et al.  Molecular dynamics simulation of primary irradiation defect formation in Fe–10%Cr alloy , 2006 .

[89]  Anthony Papagiannis Intern , 2010, BMJ : British Medical Journal.

[90]  Dieter M. Herlach,et al.  Vacancy Formation in Thermal Equilibrium in Ferromagnetic Iron and Cobalt Studied by the Spin Rotation of Positive Muons , 1987 .

[91]  Enrique Martínez,et al.  Synchronous parallel kinetic Monte Carlo for continuum diffusion-reaction systems , 2008, J. Comput. Phys..

[92]  Fei Gao,et al.  Diffusion of He interstitials in grain boundaries in α-Fe , 2006 .

[93]  E. Nardon,et al.  Quasi-linear MHD modelling of H-mode plasma response to resonant magnetic perturbations , 2010 .

[94]  Janne Wallenius,et al.  Modelling of Radiation Damage in Fe-Cr Alloys , 2007 .

[95]  Mihai-Cosmin Marinica,et al.  Stability and mobility of self-interstitials and small interstitial clusters in α-iron: ab initio and empirical potential calculations , 2005 .

[96]  David G. Pettifor,et al.  Magnetic properties of point defects in iron within the tight-binding-bond Stoner model , 2005 .

[97]  S. Dudarev,et al.  The Fe–Cr system: atomistic modelling of thermodynamics and kinetics of phase transformations , 2008 .

[98]  F. Willaime,et al.  Interaction between helium and self-defects in α-iron from first principles , 2007 .

[100]  R Bullough,et al.  Effect of the alpha-gamma phase transition on the stability of dislocation loops in bcc iron. , 2008, Physical review letters.