Absolute paleointensity at 1.27 Ga from the Mackenzie dyke swarm (Canada)

Paleointensity studies have been conducted on 6 mafic dykes from the 1270 Ma Mackenzie swarm in the Slave Province (Canada). The mean direction of the characteristic magnetization coincides with results of an earlier study in which the primary origin of the magnetization was established on the basis of a contact test. High unblocking temperatures, magnetic mineralogy, and grain‐size experiments suggest that the magnetization is dominated by pseudo‐single domain or single domain grains of magnetite. Paleointensity experiments were conducted with a specially designed oven, using a revised version of the Thellier‐Coe method. Thirteen successful determinations of paleointensity were obtained for 4 dykes. The paleofield estimates vary between 4.3 and 22.1 μT, yielding virtual dipole moments (VDMs) between 1.3 ± 0.2 and 4.5 ± 0.9 × 1022 Am2. These new results increase the number of low field determinations during the Precambrian, which largely dominate the database with an averaged field of 3.1 ± 2.5 × 1022 Am2. They also emphasize the importance of additional studies to understand the differences with the strong paleointensities obtained using new techniques.

[1]  J. Tarduno,et al.  Thermochemical remanent magnetization in Precambrian rocks: Are we sure the geomagnetic field was weak? , 2005 .

[2]  J. Besse,et al.  Long-term evolution of the geomagnetic dipole moment , 2004 .

[3]  J. Shaw,et al.  Rock magnetic studies and a comparison between microwave and Thellier palaeointensities for Canadian Precambrian dykes , 2004 .

[4]  Elisabeth Schnepp,et al.  IAGA paleointensity database: distribution and quality of the data set , 2004 .

[5]  P. L. Mcfadden FAST TRACK PAPER: Is 600 Myr long enough for the random palaeogeographic test of the geomagnetic axial dipole assumption? , 2004 .

[6]  Y. Hamano,et al.  Paleomagnetic constraints on the Archean geomagnetic field intensity obtained from komatiites of the Barberton and Belingwe greenstone belts, South Africa and Zimbabwe , 2004 .

[7]  P. Schmidt,et al.  Reversal asymmetry in Mesoproterozoic overprinting of the 1.88-Ga Gunflint Formation, Ontario, Canada: non-dipole effects or apparent polar wander? , 2003 .

[8]  U. Schärer,et al.  Low paleointensities recorded in 1 to 2.4 Ga Proterozoic dykes, Superior Province, Canada , 2003 .

[9]  J. Tarduno,et al.  Paleointensity of the early geodynamo (2.45 Ga) as recorded in Karelia: A single-crystal approach , 2003 .

[10]  J. Shaw,et al.  Microwave paleointensities from dyke chilled margins: a way to obtain long-term variations in geodynamo intensity for the last three billion years , 2003 .

[11]  J. Cogné,et al.  PaleoMac: A Macintosh™ application for treating paleomagnetic data and making plate reconstructions , 2003 .

[12]  M. Macouin,et al.  The inner core and the geodynamo , 2003 .

[13]  D. Dunlop,et al.  Multivectorial paleointensity determination from the Cordova Gabbro, southern Ontario , 2002 .

[14]  I. Sumita,et al.  Paleomagnetism of late Archean rocks of Hamersley basin, Western Australia and the paleointensity at early Proterozoic , 2001 .

[15]  H. Bertram,et al.  Physical interpretation of hysteresis loops: Micromagnetic modeling of fine particle magnetite , 2001 .

[16]  D. Dunlop,et al.  Paleointensity determination on the Late Precambrian Tudor Gabbro, Ontario , 2001 .

[17]  J. Gee,et al.  The effect of remanence anisotropy on paleointensity estimates: a case study from the Archean Stillwater Complex , 2000 .

[18]  Y. Gallet,et al.  Late Mesoproterozoic magnetostratigraphic results from Siberia: Paleogeographic implications and magnetic field behavior , 2000 .

[19]  Lisa Tauxe,et al.  Long-term variations in palaeointensity , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  Y. Hamano,et al.  Intensity of the Earth's magnetic field in late Archean obtained from diabase dikes of the Slave Province, Canada , 2000 .

[21]  D. Kent,et al.  Shallow bias of paleomagnetic inclinations in the Paleozoic and Precambrian , 1998 .

[22]  Mereille Perrin,et al.  Paleointensity database updated , 1998 .

[23]  David J. Dunlop,et al.  Rock Magnetism: Fundamentals and Frontiers , 1997 .

[24]  Masako Miki,et al.  Preliminary palaeomagnetic results of an Archaean dolerite dyke of west Greenland: geomagnetic field intensity at 2.8 Ga , 1997 .

[25]  David J. Dunlop,et al.  Rock Magnetism: Frontmatter , 1997 .

[26]  E. Mcclelland,et al.  An improved methodology for Thellier-type paleointensity determination in igneous rocks and its usefulness for verifying primary thermoremanence , 1996 .

[27]  J. Hodych INFERRING DOMAIN STATE FROM MAGNETIC HYSTERESIS IN HIGH COERCIVITY DOLERITES BEARING MAGNETITE WITH ILMENITE LAMELLAE , 1996 .

[28]  E. Mcclelland Theory of CRM acquired by grain growth, and its implications for TRM discrimination and palaeointensity determination in igneous rocks , 1996 .

[29]  W. Baragar,et al.  Longitudinal Petrochemical Variation in the Mackenzie Dyke Swarm, Northwestern Canadian Shield , 1996 .

[30]  J. Piper,et al.  Evidence for the existence of a transitional geomagnetic field recorded in a Proterozoic lava succession , 1995 .

[31]  D. Dunlop,et al.  Synopsis of paleomagnetic studies in the Kapuskasing structural zone , 1994 .

[32]  R. Ernst,et al.  Paleomagnetism of the Abitibi dyke swarm, southern Superior Province, and implications for the Logan Loop , 1993 .

[33]  D. Dunlop,et al.  The effect of oxidation on the Verwey transition in magnetite , 1993 .

[34]  N. Thomas An integrated rock magnetic approach to the selection or rejection of ancient basalt samples for palaeointensity experiments , 1993 .

[35]  R. Ernst,et al.  Evidence from magnetic fabric for the flow pattern of magma in the Mackenzie giant radiating dyke swarm , 1992, Nature.

[36]  H. Halls The Matachewan dyke swarm, Canada : an early Proterozoic magnetic field reversal , 1991 .

[37]  L. Tauxe,et al.  Properties of chemical remanence in synthetic hematite: Testing theoretical predictions , 1990 .

[38]  L. Heaman,et al.  Mackenzie igneous events, Canada: Middle Proterozoic hotspot magmatism associated with ocean opening , 1989 .

[39]  C. Hale Palaeomagnetic data suggest link between the Archaean–Proterozoic boundary and inner-core nucleation , 1987, Nature.

[40]  F. Walter The tectonic settings of continental mafic dyke swarms; failed arm and early passive margin , 1987 .

[41]  D. Dunlop,et al.  Evidence for an Early Archean Geomagnetic Field: A paleomagnetic study of the Komati Formation, Barberton Greenstone Belt, South Africa , 1984 .

[42]  G. Schubert,et al.  Magnetism and thermal evolution of the terrestrial planets , 1983 .

[43]  L. Pesonen,et al.  Geomagnetic field intensity and reversal asymmetry in late Precambrian Keweenawan rocks , 1983 .

[44]  H. Nevanlinna,et al.  Late Precambrian Keweenawan asymmetric reversals , 1981, Nature.

[45]  D. Jones,et al.  Paleomagnetism of the Bylot Basins : Evidence For Mackenzie Continental Tensional Tectonics , 1981 .

[46]  M. Fuller,et al.  Hysteresis properties of titanomagnetites: Grain-size and compositional dependence , 1977 .

[47]  M. Evans Test of the dipolar nature of the geomagnetic field throughout Phanerozoic time , 1976, Nature.

[48]  D. Dunlop The physical principles of rock magnetism , 1974 .

[49]  E. Irving,et al.  Paleomagnetism of the Et-Then Group and Mackenzie Diabase in the Great Slave Lake Area , 1972 .

[50]  D. Jones,et al.  Paleomagnetic evidence for the extent of Mackenzie igneous events , 1969 .

[51]  M. McElhinny,et al.  An investigation of the strength of the geomagnetic field in the early precambrian , 1968 .

[52]  R. Coe The Determination of Paleo-Intensities of the Earth's Magnetic Field with Emphasis on Mechanisms which Could Cause Non-ideal Behavior in Thellier's Method , 1967 .

[53]  E. Thellier,et al.  Sur l'intensite du champ magnetique terrestre dans le passe historique et geologique , 1959 .