Data Correlation-Based Clustering Algorithm in Wireless Sensor Networks
暂无分享,去创建一个
Many types of sensor data exhibit strong correlation in both space and time. Both temporal and spatial suppressions provide opportunities for reducing the energy cost of sensor data collection. Unfortunately, existing clustering algorithms are difficult to utilize the spatial or temporal opportunities, because they just organize clusters based on the distribution of sensor nodes or the network topology but not on the correlation of sensor data. In this paper, we propose a novel clustering algorithm based on the correlation of sensor data. We modify the advertisement sub-phase and TDMA schedule scheme to organize clusters by adjacent sensor nodes which have similar readings. Also, we propose a spatio-temporal suppression scheme for our clustering algorithm. In order to show the superiority of our clustering algorithm, we compare it with the existing suppression algorithms in terms of the lifetime of the sensor network and the size of data which have been collected in the base station. As a result, our experimental results show that the size of data is reduced and the whole network lifetime is prolonged.
[1] Sung-Kwun Oh,et al. GA-based Feed-forward Self-organizing Neural Network Architecture and Its Applications for Multi-variable Nonlinear Process Systems , 2009, KSII Trans. Internet Inf. Syst..