On Square-Free Numbers

Summary In the article the formal characterization of square-free numbers is shown; in this manner the paper is the continuation of [19]. Essentially, we prepared some lemmas for convenient work with numbers (including the proof that the sequence of prime reciprocals diverges [1]) according to [18] which were absent in the Mizar Mathematical Library. Some of them were expressed in terms of clusters’ registrations, enabling automatization machinery available in the Mizar system. Our main result of the article is in the final section; we proved that the lattice of positive divisors of a positive integer n is Boolean if and only if n is square-free.

[1]  S. Zukowski Introduction to Lattice Theory , 1990 .

[2]  Beata Padlewska,et al.  Families of Sets , 1990 .

[3]  Jozef Bia,et al.  Group and Field Definitions , 1990 .

[4]  Martin Aigner,et al.  Proofs from THE BOOK , 1998 .

[5]  Rafał Kwiatek Factorial and Newton Coefficients Rafał Kwiatek Nicolaus , 1990 .

[6]  Czeslaw Bylinski Functions and Their Basic Properties , 2004 .

[7]  Andrzej Trybulec,et al.  Binary Operations Applied to Functions , 1990 .

[8]  Colin Runciman,et al.  What About the Natural Numbers? , 1989, Comput. Lang..

[9]  Jaross Law Kotowicz Real Sequences and Basic Operations on Them , 1989 .

[10]  M. Jastrzębska,et al.  On the Properties of the Möbius Function , 2006 .

[11]  Yasunari Shidama,et al.  Uniqueness of Factoring an Integer and Multiplicative Group Z/pZ* , 2008, Formaliz. Math..

[12]  Czeslaw Bylinski Some Basic Properties of Sets , 2004 .

[13]  Xiquan Liang,et al.  Linear Congruence Relation and Complete Residue Systems , 2007 .

[14]  Alexander Ostermann,et al.  Real-Valued Functions , 2011 .

[15]  Colin R. Fletcher,et al.  The Fundamental Theorem of Arithmetic Dissected , 1997 .

[16]  M. Aigner,et al.  Proofs from "The Book" , 2001 .

[17]  Czeslaw Bylinski Functions from a Set to a Set , 2004 .

[18]  Adam Naumowicz,et al.  Conjugate Sequences , Bounded Complex Sequences and Convergent Complex Sequences , 1996 .

[19]  The Sum and Product of Finite Sequences of Real Numbers , 1990 .

[20]  Grzegorz Zwara,et al.  The Divisibility of Integers and Integer Relatively Primes 1 , 1990 .

[21]  Edmund Woronowicz Relations and Their Basic Properties , 2004 .

[22]  Jarosław Kotowicz,et al.  Convergent Sequences and the Limit of Sequences , 2004 .

[23]  A. Kondracki Basic Properties of Rational Numbers , 1990 .

[24]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[25]  Kenneth Halpern August The Cardinal Numbers , 1888, Nature.

[26]  G. Bancerek The Fundamental Properties of Natural Numbers , 1990 .

[27]  Andrzej Trybulec,et al.  On the Sets Inhabited by Numbers 1 , 2003 .

[28]  Yasushi Fuwa,et al.  Public-Key Cryptography and Pepin’s Test for the Primality of Fermat Numbers , 2007 .

[29]  G. Bancerek,et al.  Ordinal Numbers , 2003 .

[30]  Artur Korniłowicz Fundamental Theorem of Arithmetic 1 , 2007 .

[31]  B. Balkay,et al.  Introduction to lattice theory , 1965 .

[32]  Czes Law Byli´nski,et al.  Finite Sequences and Tuples of Elements of a Non-empty Sets , 1990 .

[33]  Andrzej Trybulec,et al.  Many-sorted Sets , 1993 .

[34]  Grzegorz Bancerek,et al.  Segments of Natural Numbers and Finite Sequences , 1990 .

[35]  G. Bancerek Konig's Theorem , 1990 .

[36]  A. Kondracki,et al.  The Chinese Remainder Theorem , 2019, Certain Number-Theoretic Episodes in Algebra.

[37]  Marek Chmur The Lattice of Natural Numbers and The Sublattice of it. The Set of Prime Numbers , 1991 .