A new joint spectral radius analysis of random PSO algorithm

AbstractThe existing stability analysis of particle swarm optimization (PSO) algorithm is chiefly concluded by the assumption of constant transfer matrix or time-varying random transfer matrix. Firstly, one counterexample is provided to show that the existing convergence analysis is not possibly valid for PSO system involving random variables. Secondly, the joint spectral radius, mainly calculated by the maximum eigenvalue of the product of all asymmetric random transfer matrices, is introduced to analyze and discuss convergence condition and convergence rate from numerical viewpoint with the aid of Monte Carlo method. Numerical results show that there is one major discrepancy between some preview convergence results and our corresponding results, helping us to deeply understand the tradeoff between exploration ability and exploitation ability as well as providing certain guideline for parameter selection.

[1]  Shiyuan Yang,et al.  Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm , 2007, Inf. Process. Lett..

[2]  Gabriela Ciuprina,et al.  Use of intelligent-particle swarm optimization in electromagnetics. IEEE Trans Mag , 2002 .

[3]  Michael N. Vrahatis,et al.  On the computation of all global minimizers through particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[4]  G. Lambert-Torres,et al.  A hybrid particle swarm optimization applied to loss power minimization , 2005, IEEE Transactions on Power Systems.

[5]  Riccardo Poli,et al.  Mean and Variance of the Sampling Distribution of Particle Swarm Optimizers During Stagnation , 2009, IEEE Transactions on Evolutionary Computation.

[6]  Shengxiang Yang,et al.  Particle Swarm Optimization With Composite Particles in Dynamic Environments , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[7]  Moncef Gabbouj,et al.  Fractional Particle Swarm Optimization in Multidimensional Search Space , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[8]  Xiaoqin Zhang,et al.  Multiple Object Tracking Via Species-Based Particle Swarm Optimization , 2010, IEEE Transactions on Circuits and Systems for Video Technology.

[9]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, ANTS Conference.

[10]  Martin Middendorf,et al.  A hierarchical particle swarm optimizer and its adaptive variant , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[11]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[12]  Zwe-Lee Gaing A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004, IEEE Transactions on Energy Conversion.

[13]  José Neves,et al.  The fully informed particle swarm: simpler, maybe better , 2004, IEEE Transactions on Evolutionary Computation.

[14]  Russell C. Eberhart,et al.  Tracking and optimizing dynamic systems with particle swarms , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[15]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[16]  Shang-Jeng Tsai,et al.  Efficient Population Utilization Strategy for Particle Swarm Optimizer , 2009, IEEE Trans. Syst. Man Cybern. Part B.

[17]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[18]  Michael R. Lyu,et al.  A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training , 2007, Appl. Math. Comput..

[19]  Visakan Kadirkamanathan,et al.  Stability analysis of the particle dynamics in particle swarm optimizer , 2006, IEEE Transactions on Evolutionary Computation.

[20]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[21]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[22]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[23]  Jürgen Branke,et al.  Multiswarms, exclusion, and anti-convergence in dynamic environments , 2006, IEEE Transactions on Evolutionary Computation.

[24]  Juan Luis Fern Stochastic Stability Analysis of the Linear Continuous and Discrete PSO Models , 2011 .

[25]  Milan R. Rapaic,et al.  Time-varying PSO - convergence analysis, convergence-related parameterization and new parameter adjustment schemes , 2009, Inf. Process. Lett..

[26]  Jürgen Branke,et al.  Multi-swarm Optimization in Dynamic Environments , 2004, EvoWorkshops.

[27]  Chia-Feng Juang,et al.  A hybrid of genetic algorithm and particle swarm optimization for recurrent network design , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[28]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[29]  Xiaodong Li,et al.  This article has been accepted for inclusion in a future issue. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 Locating and Tracking Multiple Dynamic Optima by a Particle Swarm Model Using Speciation , 2022 .

[30]  A.P. Engelbrecht,et al.  Learning to play games using a PSO-based competitive learning approach , 2004, IEEE Transactions on Evolutionary Computation.

[31]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[32]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[33]  Andries Petrus Engelbrecht,et al.  Locating multiple optima using particle swarm optimization , 2007, Appl. Math. Comput..

[34]  Yan Meng,et al.  Swarm intelligence based dynamic object tracking , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[35]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[36]  E. Ozcan,et al.  Particle swarm optimization: surfing the waves , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[37]  Chilukuri K. Mohan,et al.  Analysis of a simple particle swarm optimization system , 1998 .

[38]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).