A Posteriori Analysis of Discontinuous Galerkin Schemes for Systems of Hyperbolic Conservation Laws

In this work we construct reliable a posteriori estimates for some semi- (spatially) discrete discontinuous Galerkin schemes applied to nonlinear systems of hyperbolic conservation laws. We make use of appropriate reconstructions of the discrete solution together with the relative entropy stability framework, which leads to error control in the case of smooth solutions. The methodology we use is quite general and allows for a posteriori control of discontinuous Galerkin schemes with standard flux choices which appear in the approximation of conservation laws. In addition to the analysis, we conduct some numerical benchmarking to test the robustness of the resultant estimator.

[1]  Ralf Hartmann,et al.  Adaptive Discontinuous Galerkin Finite Element Methods for Nonlinear Hyperbolic Conservation Laws , 2002, SIAM J. Sci. Comput..

[2]  L. Gosse,et al.  Error estimates for well-balanced and time-split schemes on a damped semilinear wave equation , 2014 .

[3]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[4]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[5]  Marc Laforest,et al.  An A Posteriori Error Estimate for Glimm’s Scheme , 2008 .

[6]  P. LeFloch,et al.  Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves , 2002 .

[7]  Andreas Dedner,et al.  Error Control for a Class of Runge-Kutta Discontinuous Galerkin Methods for Nonlinear Conservation Laws , 2007, SIAM J. Numer. Anal..

[8]  Mario Ohlberger,et al.  A review of a posteriori error control and adaptivity for approximations of non‐linear conservation laws , 2009 .

[9]  Mario Ohlberger,et al.  A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions , 2000, Math. Comput..

[10]  Laurent Gosse,et al.  Two A Posteriori Error Estimates for One-Dimensional Scalar Conservation Laws , 2000, SIAM J. Numer. Anal..

[11]  Charalambos Makridakis,et al.  Stability and Convergence of a Class of Finite Element Schemes for Hyperbolic Systems of Conservation Laws , 2004, SIAM J. Numer. Anal..

[12]  Marc Laforest,et al.  An adaptive version of Glimm's scheme , 2010 .

[13]  Chi-Wang Shu,et al.  Error Estimates to Smooth Solutions of Runge-Kutta Discontinuous Galerkin Methods for Scalar Conservation Laws , 2004, SIAM J. Numer. Anal..

[14]  Charalambos Makridakis,et al.  Space and time reconstructions in a posteriori analysis of evolution problems , 2007 .

[15]  Chi-Wang Shu,et al.  Stability Analysis and A Priori Error Estimates of the Third Order Explicit Runge-Kutta Discontinuous Galerkin Method for Scalar Conservation Laws , 2010, SIAM J. Numer. Anal..

[16]  Camillo De Lellis,et al.  On Admissibility Criteria for Weak Solutions of the Euler Equations , 2007, 0712.3288.

[17]  Bernardo Cockburn,et al.  Continuous dependence and error estimation for viscosity methods , 2003, Acta Numerica.

[18]  Christian Rohde,et al.  Finite‐volume schemes for Friedrichs systems in multiple space dimensions: A priori and a posteriori error estimates , 2005 .

[19]  ZhangQiang,et al.  Error Estimates to Smooth Solutions of Runge--Kutta Discontinuous Galerkin Methods for Scalar Conservation Laws , 2004 .

[20]  P. LeFloch Hyperbolic Systems of Conservation Laws , 2002 .

[21]  Constantine M. Dafermos,et al.  Dafermos Hyperbolic Conservation Laws in Continuum Physics , 2008 .

[22]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[23]  Mahboub Baccouch,et al.  Discontinuous Galerkin error estimation for hyperbolic problems on unstructured triangular meshes , 2011 .

[24]  Chi-Wang Shu,et al.  Error Estimates to Smooth Solutions of Runge-Kutta Discontinuous Galerkin Method for Symmetrizable Systems of Conservation Laws , 2006, SIAM J. Numer. Anal..

[25]  R. J. Diperna Uniqueness of Solutions to Hyperbolic Conservation Laws. , 1978 .

[26]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[27]  C. Dafermos The second law of thermodynamics and stability , 1979 .

[28]  D. Kröner Numerical Schemes for Conservation Laws , 1997 .

[29]  M. LAFOREST,et al.  A Posteriori Error Estimate for Front-Tracking: Systems of Conservation Laws , 2004, SIAM J. Math. Anal..

[30]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[31]  Mathematisches Forschungsinstitut Oberwolfach,et al.  Hyperbolic Conservation Laws , 2004 .

[32]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[33]  Christian Rohde,et al.  Error Estimates for Finite Volume Approximations of Classical Solutions for Nonlinear Systems of Hyperbolic Balance Laws , 2006, SIAM J. Numer. Anal..

[34]  Ricardo H. Nochetto,et al.  A posteriori error analysis for higher order dissipative methods for evolution problems , 2006, Numerische Mathematik.