A Posteriori Analysis of Discontinuous Galerkin Schemes for Systems of Hyperbolic Conservation Laws
暂无分享,去创建一个
Charalambos Makridakis | Jan Giesselmann | Tristan Pryer | C. Makridakis | J. Giesselmann | T. Pryer
[1] Ralf Hartmann,et al. Adaptive Discontinuous Galerkin Finite Element Methods for Nonlinear Hyperbolic Conservation Laws , 2002, SIAM J. Sci. Comput..
[2] L. Gosse,et al. Error estimates for well-balanced and time-split schemes on a damped semilinear wave equation , 2014 .
[3] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[4] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[5] Marc Laforest,et al. An A Posteriori Error Estimate for Glimm’s Scheme , 2008 .
[6] P. LeFloch,et al. Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves , 2002 .
[7] Andreas Dedner,et al. Error Control for a Class of Runge-Kutta Discontinuous Galerkin Methods for Nonlinear Conservation Laws , 2007, SIAM J. Numer. Anal..
[8] Mario Ohlberger,et al. A review of a posteriori error control and adaptivity for approximations of non‐linear conservation laws , 2009 .
[9] Mario Ohlberger,et al. A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions , 2000, Math. Comput..
[10] Laurent Gosse,et al. Two A Posteriori Error Estimates for One-Dimensional Scalar Conservation Laws , 2000, SIAM J. Numer. Anal..
[11] Charalambos Makridakis,et al. Stability and Convergence of a Class of Finite Element Schemes for Hyperbolic Systems of Conservation Laws , 2004, SIAM J. Numer. Anal..
[12] Marc Laforest,et al. An adaptive version of Glimm's scheme , 2010 .
[13] Chi-Wang Shu,et al. Error Estimates to Smooth Solutions of Runge-Kutta Discontinuous Galerkin Methods for Scalar Conservation Laws , 2004, SIAM J. Numer. Anal..
[14] Charalambos Makridakis,et al. Space and time reconstructions in a posteriori analysis of evolution problems , 2007 .
[15] Chi-Wang Shu,et al. Stability Analysis and A Priori Error Estimates of the Third Order Explicit Runge-Kutta Discontinuous Galerkin Method for Scalar Conservation Laws , 2010, SIAM J. Numer. Anal..
[16] Camillo De Lellis,et al. On Admissibility Criteria for Weak Solutions of the Euler Equations , 2007, 0712.3288.
[17] Bernardo Cockburn,et al. Continuous dependence and error estimation for viscosity methods , 2003, Acta Numerica.
[18] Christian Rohde,et al. Finite‐volume schemes for Friedrichs systems in multiple space dimensions: A priori and a posteriori error estimates , 2005 .
[19] ZhangQiang,et al. Error Estimates to Smooth Solutions of Runge--Kutta Discontinuous Galerkin Methods for Scalar Conservation Laws , 2004 .
[20] P. LeFloch. Hyperbolic Systems of Conservation Laws , 2002 .
[21] Constantine M. Dafermos,et al. Dafermos Hyperbolic Conservation Laws in Continuum Physics , 2008 .
[22] J. Hesthaven,et al. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .
[23] Mahboub Baccouch,et al. Discontinuous Galerkin error estimation for hyperbolic problems on unstructured triangular meshes , 2011 .
[24] Chi-Wang Shu,et al. Error Estimates to Smooth Solutions of Runge-Kutta Discontinuous Galerkin Method for Symmetrizable Systems of Conservation Laws , 2006, SIAM J. Numer. Anal..
[25] R. J. Diperna. Uniqueness of Solutions to Hyperbolic Conservation Laws. , 1978 .
[26] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[27] C. Dafermos. The second law of thermodynamics and stability , 1979 .
[28] D. Kröner. Numerical Schemes for Conservation Laws , 1997 .
[29] M. LAFOREST,et al. A Posteriori Error Estimate for Front-Tracking: Systems of Conservation Laws , 2004, SIAM J. Math. Anal..
[30] C. Dafermos. Hyberbolic Conservation Laws in Continuum Physics , 2000 .
[31] Mathematisches Forschungsinstitut Oberwolfach,et al. Hyperbolic Conservation Laws , 2004 .
[32] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[33] Christian Rohde,et al. Error Estimates for Finite Volume Approximations of Classical Solutions for Nonlinear Systems of Hyperbolic Balance Laws , 2006, SIAM J. Numer. Anal..
[34] Ricardo H. Nochetto,et al. A posteriori error analysis for higher order dissipative methods for evolution problems , 2006, Numerische Mathematik.