Topology of vibro-impact systems in the neighborhood of grazing

Abstract The grazing bifurcation is considered for the Newtonian model of vibro-impact systems. A brief review on the conditions, sufficient for the existence of a grazing family of periodic solutions, is given. The properties of these periodic solutions are discussed. A plenty of results on the topological structure of attractors of vibro-impact systems is known. However, since the considered system is strongly nonlinear, these attractors must be very sensitive to changes of parameters of the system. On the other hand, they are observed in experiments and numerical simulations. We offer ( Theorem 2 ) an approach which allows to explain this contradiction and give a new robust mathematical model of the non-hyperbolic dynamics in a neighborhood of grazing.

[1]  G. Cicogna,et al.  NONHYPERBOLIC HOMOCLINIC CHAOS , 1999, chao-dyn/9904001.

[2]  Bo Deng,et al.  The Sil'nikov problem, exponential expansion, strong λ-lemma, C1-linearization, and homoclinic bifurcation , 1989 .

[3]  P. J. Holmes The dynamics of repeated impacts with a sinusoidally vibrating table , 1982 .

[4]  A. P. Ivanov,et al.  Bifurcations in impact systems , 1996 .

[5]  Steven W. Shaw,et al.  The transition to chaos in a simple mechanical system , 1989 .

[6]  Ekaterina Pavlovskaia,et al.  Bifurcation analysis of an impact oscillator with a one-sided elastic constraint near grazing , 2010 .

[7]  H. Osinga,et al.  Unstable manifolds of a limit cycle near grazing , 2008 .

[8]  G. S. Whiston,et al.  Global dynamics of a vibro-impacting linear oscillator , 1987 .

[9]  S. Smale Diffeomorphisms with Many Periodic Points , 1965 .

[10]  Arne Nordmark,et al.  Non-periodic motion caused by grazing incidence in an impact oscillator , 1991 .

[11]  D. Chillingworth Discontinuity geometry for an impact oscillator , 2002 .

[12]  Chris Budd,et al.  Intermittency in impact oscillators close to resonance , 1994 .

[13]  Bifurcation Resulting in Chaotic Motions in Dynamical Systems with Shock Interactions , 2005 .

[14]  D. Chillingworth Dynamics of an impact oscillator near a degenerate graze , 2010, 1005.3286.

[15]  A. Nordmark,et al.  Bifurcations caused by grazing incidence in many degrees of freedom impact oscillators , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  Ott,et al.  Border-collision bifurcations: An explanation for observed bifurcation phenomena. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  The reduction principle for discrete dynamical and semidynamical systems in metric spaces , 1994 .

[18]  S. P. Gorbikov,et al.  Statistical description of the limiting set for chaotic motions of the vibro-impact system , 2007 .

[19]  Yakov Pesin,et al.  Lectures on Partial Hyperbolicity and Stable Ergodicity , 2004 .

[20]  Mario di Bernardo,et al.  Bifurcations in Nonsmooth Dynamical Systems , 2008, SIAM Rev..

[21]  A. Kelley The stable, center-stable, center, center-unstable, unstable manifolds , 1967 .

[22]  J. M. T. Thompson,et al.  Chaotic dynamics of an impact oscillator , 1983 .

[23]  Chris Budd,et al.  Chattering and related behaviour in impact oscillators , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[24]  L. Shilnikov,et al.  Bifurcations of systems with structurally unstable homoclinic orbits and moduli of ω-equivalence , 1997 .

[25]  Marat Akhmet,et al.  Li-Yorke chaos in the system with impacts , 2009 .

[26]  Arne Nordmark,et al.  Effects due to Low Velocity Impact in Mechanical Oscillators , 1992 .

[27]  A. P. Ivanov,et al.  Stabilization Of An Impact Oscillator Near Grazing Incidence Owing To Resonance , 1993 .

[28]  Soumitro Banerjee,et al.  Robust Chaos , 1998, chao-dyn/9803001.

[29]  Gábor Stépán,et al.  Global dynamics of low immersion high-speed milling. , 2004, Chaos.

[30]  Harry Dankowicz,et al.  Low-velocity impacts of quasiperiodic oscillations , 2002 .

[31]  S. Kryzhevich Grazing bifurcation and chaotic oscillations of vibro-impact systems with one degree of freedom , 2008 .

[32]  Celso Grebogi,et al.  Universal behavior of impact oscillators near grazing incidence , 1995 .

[33]  Arne Nordmark,et al.  Existence of periodic orbits in grazing bifurcations of impacting mechanical oscillators , 2001 .

[34]  Alan R. Champneys,et al.  Bifurcations in piecewise-smooth dynamical systems: Theory and Applications , 2007 .

[35]  C. Gontier,et al.  Approach to the periodic and chaotic behaviour of the impact oscillator by a continuation method , 1997 .

[36]  M. Kunze Non-Smooth Dynamical Systems , 2000 .

[37]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[38]  Ekaterina Pavlovskaia,et al.  Low-dimensional maps for piecewise smooth oscillators , 2007 .

[39]  H. Dankowicz,et al.  On the origin and bifurcations of stick-slip oscillations , 2000 .

[40]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[41]  G. S. Whiston,et al.  The vibro-impact response of a harmonically excited and preloaded one-dimensional linear oscillator , 1987 .

[42]  Molenaar,et al.  Grazing impact oscillations , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  G. S. Whiston,et al.  Singularities in vibro-impact dynamics , 1992 .

[44]  Ekaterina Pavlovskaia,et al.  Experimental study of impact oscillator with one-sided elastic constraint , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[45]  Ekaterina Pavlovskaia,et al.  Invisible grazings and dangerous bifurcations in impacting systems: the problem of narrow-band chaos. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  A. Nordmark Universal limit mapping in grazing bifurcations , 1997 .