An empirical study of rendering sinusoidal textures on a ultrasonic variable-friction haptic surface

An ultrasonic variable-friction tactile display (VFTD) utilizes a squeeze film effect to generate and transmit a touch sensation of texture to a human fingertip in contact with the haptic surface. Haptic devices in this category can render and control various types of surface roughness through the amplitude modulation. This paper presents an experimental study of constructing amplitude modulation signals to create a virtual texture with a simple sinusoidal topology on a VFTD. A series of user tests have been conducted to identify and evaluate the relationship between an amplitude-modulated electrical signal input and a rendered texture output. The experimental results may significantly contribute to a better understanding of texture rendering on the variable-friction tactile displays.

[1]  Keehoon Kim,et al.  3B24 The use of degenerate mode shapes in piezoelectric variable-friction tactile displays(The 12th International Conference on Motion and Vibration Control) , 2014 .

[2]  J. Edward Colgate,et al.  Modeling and synthesis of tactile texture with spatial spectrograms for display on variable friction surfaces , 2015, 2015 IEEE World Haptics Conference (WHC).

[3]  Takashi Maeno,et al.  Hybrid display of realistic tactile sense using ultrasonic vibrator and force display , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Keehoon Kim,et al.  Analytical modeling of disk-type piezoelectric variable friction tactile displays , 2013, 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[5]  Nicolas Roussel,et al.  STIMTAC: a tactile input device with programmable friction , 2011, UIST '11 Adjunct.

[6]  Ali Israr,et al.  TeslaTouch: electrovibration for touch surfaces , 2010, UIST.

[7]  Anne Marie Piper,et al.  TPad Fire : Surface Haptic Tablet , 2013 .

[8]  J. Edward Colgate,et al.  T-PaD: Tactile Pattern Display through Variable Friction Reduction , 2007, Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC'07).

[9]  M. M. Taylor,et al.  Fingertip force, surface geometry, and the perception of roughness by active touch , 1972 .

[10]  Jonathan A. Wickert,et al.  An Ultrasonic Standing-wave-actuated Nano-positioning Walking Robot: Piezoelectric-metal Composite Beam Modeling , 2006 .

[11]  Susan J. Lederman,et al.  PERCEIVING ROUGHNESS VIA A RIGID PROBE: PSYCHOPHYSICAL EFFECTS OF EXPLORATION SPEED AND MODE OF TOUCH , 1999 .