Increased efficiencies on CdTe solar cells via luminescence down-shifting with excitation energy transfer between dyes

The external quantum efficiencies of CdTe solar cells fabricated by the atmospheric pressure metal organic chemical vapour deposition (AP–MOCVD) method have been measured with one and two dye doped luminescence down-shifting (LDS) layers on top. Excitation energy transfer between the dyes is used to extend the absorption ability of the LDS layer to λ=350 nm and increase the external quantum efficiency (EQE) of the cells for wavelengths λ<540 nm. The observed increase in the EQE corresponds to a rise in the short circuit current density of 1.88 mA/cm2 under AM1.5G illumination spectra, which is equivalent to a 10% relative solar cell efficiency increase. A simple model is presented, which accounts for the absorption and photon collection efficiencies of the LDS layer.

[1]  J. Granata,et al.  Effect of CdS thickness on CdS/CdTe quantum efficiency [solar cells] , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[2]  T. Maruyama,et al.  Transformations of the wavelength of the light incident upon CdS/CdTe solar cells , 2001 .

[3]  G. Calzaferri Artificial Photosynthesis , 2010 .

[4]  CdTe thin film solar cells with ZnSe buffer layer , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[5]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[6]  Tom Markvart,et al.  Photon collection efficiency of fluorescent solar collectors , 2007 .

[7]  Melinda S. Hanes,et al.  Optimized excitation energy transfer in a three-dye luminescent solar concentrator , 2007 .

[8]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[9]  T. Meyer Photon transport in fluorescent solar collectors , 2010 .

[10]  U. Rau,et al.  Improvement of photon collection in Cu(In, Ga)Se2 solar cells and modules by fluorescent frequency conversion , 2007 .

[11]  S. Irvine,et al.  MOCVD of thin film photovoltaic solar cells—Next-generation production technology? , 2008 .

[12]  R. Hodgson,et al.  The effect of fluorescent wavelength shifting on solar cell spectral response , 1979 .

[13]  J. B. Birks,et al.  Photophysics of aromatic molecules , 1970 .

[14]  B. Richards,et al.  Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review , 2009 .

[15]  Timothy D Heidel,et al.  High-Efficiency Organic Solar Concentrators for Photovoltaics , 2008, Science.

[16]  G. Wagenblast,et al.  New perylene and violanthrone dyestuffs for fluorescent collectors , 1989 .

[17]  M. Schröder,et al.  Colloid attachment by ILGAR-layers: Creating fluorescing layers to increase quantum efficiency of solar cells , 2006 .

[18]  N. S. Sariciftcia,et al.  Advanced photon-harvesting concepts for low-energy gap organic solar cells , 2007 .

[19]  K. Durose,et al.  Highly Arsenic Doped CdTe Layers for the Back Contacts of CdTe Solar Cells , 2007 .

[20]  B. Valeur,et al.  Molecular Fluorescence: Principles and Applications , 2001 .

[21]  H. Okamoto,et al.  Influence of CdS window layer on 2-μm thick CdS/CdTe thin film solar cells , 2003 .

[22]  M. Maroncelli,et al.  Set of Secondary Emission Standards for Calibration of the Spectral Responsivity in Emission Spectroscopy , 1998 .

[23]  W. McGahan,et al.  Spectroscopic Ellipsometry and Reflectometry: A User's Guide , 1999 .