Exact rates in density support estimation

Let f be an unknown multivariate probability density with compact support S"f. Given n independent observations X"1,...,X"n drawn from f, this paper is devoted to the study of the estimator [email protected]?"n of S"f defined as unions of balls centered at the X"i and of common radius r"n. To measure the proximity between [email protected]?"n and S"f, we employ a general criterion d"g, based on some function g, which encompasses many statistical situations of interest. Under mild assumptions on the sequence (r"n) and some analytic conditions on f and g, the exact rates of convergence of d"g([email protected]?"n,S"f) are obtained using tools from Riemannian geometry. The conditions on the radius sequence are found to be sharp and consequences of the results are discussed from a statistical perspective.

[1]  I. Chavel Riemannian Geometry: Subject Index , 2006 .

[2]  A. Tsybakov,et al.  Minimax theory of image reconstruction , 1993 .

[3]  Revaz Valerianovich Gamkrelidze,et al.  Topology and Geometry , 1970 .

[4]  A. Rényi,et al.  über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .

[5]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[6]  Antonio Cuevas,et al.  Set estimation and nonparametric detection , 2000 .

[7]  A. Cuevas,et al.  A plug-in approach to support estimation , 1997 .

[8]  B. Cadre Kernel estimation of density level sets , 2005, math/0501221.

[9]  L. Devroye,et al.  Detection of Abnormal Behavior Via Nonparametric Estimation of the Support , 1980 .

[10]  A. Tsybakov,et al.  Estimation of non-sharp support boundaries , 1995 .

[11]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[12]  E. Mammen,et al.  Asymptotical minimax recovery of sets with smooth boundaries , 1995 .

[13]  A. Cuevas,et al.  On boundary estimation , 2004, Advances in Applied Probability.

[14]  A. Tsybakov,et al.  Efficient Estimation of Monotone Boundaries , 1995 .

[15]  A. Rényi,et al.  über die konvexe Hülle von n zufÄllig gewÄhlten Punkten. II , 1964 .

[16]  A. Tsybakov On nonparametric estimation of density level sets , 1997 .

[17]  A. Cuevas On Pattern Analysis in the Non‐Convex Case , 1990 .

[18]  W. Polonik Measuring Mass Concentrations and Estimating Density Contour Clusters-An Excess Mass Approach , 1995 .

[19]  K. Nomizu,et al.  Foundations of Differential Geometry, Volume I. , 1965 .

[20]  L. Evans Measure theory and fine properties of functions , 1992 .

[21]  Jussi Klemelä,et al.  Complexity penalized support estimation , 2004 .

[22]  A. P. Korostelev,et al.  Estimating the density support and its functionals , 1993 .

[23]  K. Nomizu,et al.  Foundations of Differential Geometry , 1963 .