Generalizing Dubins Curves: Minimum-time Sequences of Body-fixed Rotations and Translations in the Plane

In this paper we present the minimum-time sequences of rotations and translations that connect two configurations of a rigid body in the plane. The configuration of the body is its position and orientation, given by (x , y, θ ) coordinates, and the rotations and translations are velocities (x , y, θ ) that are constant in the frame of the robot. There are no obstacles in the plane. We completely describe the structure of the fastest trajectories, and present a polynomial-time algorithm that, given a set of rotation and translation controls, enumerates a finite set of structures of optimal trajectories. These trajectories are a generalization of the well-known Dubins and Reeds—Shepp curves, which describe the shortest paths for steered cars in the plane.

[1]  Raffaello D'Andrea,et al.  Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle , 2004, Robotics Auton. Syst..

[2]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[3]  H. Sussmann,et al.  The Markov-Dubins problem with angular acceleration control , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[4]  Jean-Claude Latombe,et al.  Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles , 2005, Algorithmica.

[5]  Devin J. Balkcom,et al.  Time Optimal Trajectories for Bounded Velocity Differential Drive Vehicles , 2002, Int. J. Robotics Res..

[6]  Subhash Suri,et al.  Curvature-constrained shortest paths in a convex polygon (extended abstract) , 1998, SCG '98.

[7]  Devin J. Balkcom,et al.  Generalizing the dubins and reeds-shepp cars: Fastest paths for bounded-velocity mobile robots , 2008, 2008 IEEE International Conference on Robotics and Automation.

[8]  J. Sussmann,et al.  SHORTEST PATHS FOR THE REEDS-SHEPP CAR: A WORKED OUT EXAMPLE OF THE USE OF GEOMETRIC TECHNIQUES IN NONLINEAR OPTIMAL CONTROL. 1 , 1991 .

[9]  John J. Craig,et al.  Introduction to robotics - mechanics and control (2. ed.) , 1989 .

[10]  Philippe Souères,et al.  Optimal trajectories for nonholonomic mobile robots , 1998 .

[11]  L. Dubins On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents , 1957 .

[12]  François G. Pin,et al.  Time-Optimal Trajectories for Mobile Robots With Two Independently Driven Wheels , 1994, Int. J. Robotics Res..

[13]  Antonio Bicchi,et al.  Optimal paths in a constrained image plane for purely image-based parking , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Marilena Vendittelli,et al.  Obstacle distance for car-like robots , 1999, IEEE Trans. Robotics Autom..

[15]  Kenneth Y. Goldberg,et al.  Motion Planning Under Uncertainty for Image-guided Medical Needle Steering , 2008, Int. J. Robotics Res..

[16]  Devin J. Balkcom,et al.  Minimum Wheel-Rotation Paths for Differential-Drive Mobile Robots , 2009, Int. J. Robotics Res..

[17]  Francis L. Merat,et al.  Introduction to robotics: Mechanics and control , 1987, IEEE J. Robotics Autom..

[18]  Rafael Murrieta-Cid,et al.  A Motion Planner for Maintaining Landmark Visibility with a Differential Drive Robot , 2008, WAFR.

[19]  P. Souéres,et al.  Shortest paths synthesis for a car-like robot , 1996, IEEE Trans. Autom. Control..

[20]  Jean-Yves Fourquet,et al.  Minimum time motion of a mobile robot with two independent, acceleration-driven wheels , 1997, Proceedings of International Conference on Robotics and Automation.

[21]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[22]  Monique Chyba,et al.  Designing Efficient Trajectories for Underwater Vehicles Using Geometric Control Theory , 2005 .

[23]  Subhash Suri,et al.  Curvature-Constrained Shortest Paths in a Convex Polygon , 2002, SIAM J. Comput..

[24]  Andrew D. Lewis,et al.  Optimal control for a simplified hovercraft model , 2000 .

[25]  Guy Desaulniers On shortest paths for a car-like robot maneuvering around obstacles , 1996, Robotics Auton. Syst..

[26]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[27]  L. Shepp,et al.  OPTIMAL PATHS FOR A CAR THAT GOES BOTH FORWARDS AND BACKWARDS , 1990 .

[28]  Kevin M. Lynch,et al.  Stable Pushing: Mechanics, Controllability, and Planning , 1995, Int. J. Robotics Res..

[29]  Devin J. Balkcom,et al.  Time-optimal Trajectories for an Omni-directional Vehicle , 2006, Int. J. Robotics Res..

[30]  B.R. Donald,et al.  An untethered, electrostatic, globally controllable MEMS micro-robot , 2006, Journal of Microelectromechanical Systems.