Optochemical Control of Biological Processes in Cells and Animals.

Biological processes are naturally regulated with high spatial and temporal control, as is perhaps most evident in metazoan embryogenesis. Chemical tools have been extensively utilized in cell and developmental biology to investigate cellular processes, and conditional control methods have expanded applications of these technologies toward resolving complex biological questions. Light represents an excellent external trigger since it can be controlled with very high spatial and temporal precision. To this end, several optically regulated tools have been developed and applied to living systems. In this review we discuss recent developments of optochemical tools, including small molecules, peptides, proteins, and nucleic acids that can be irreversibly or reversibly controlled through light irradiation, with a focus on applications in cells and animals.

[1]  Gaudenz Danuser,et al.  Manipulation of Endogenous Kinase Activity in Living Cells Using Photoswitchable Inhibitory Peptides , 2014, ACS synthetic biology.

[2]  W. Tan,et al.  Using photons to manipulate enzyme inhibition by an azobenzene-modified nucleic acid probe , 2009, Proceedings of the National Academy of Sciences.

[3]  G. Ellis‐Davies,et al.  Photolabile chelators for the rapid photorelease of divalent cations. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[4]  M. Zimmermann,et al.  Ein zellpermeables und photospaltbares Reagens für die selektive intrazelluläre Protein‐Protein‐Dimerisierung , 2014 .

[5]  S. Leach,et al.  Cyclic caged morpholinos: conformationally gated probes of embryonic gene function. , 2012, Angewandte Chemie.

[6]  Wiktor Szymanski,et al.  Wavelength-selective cleavage of photoprotecting groups: strategies and applications in dynamic systems. , 2015, Chemical Society reviews.

[7]  R. Dempski,et al.  A Zinc(II) Photocage Based on a Decarboxylation Metal Ion Release Mechanism for Investigating Homeostasis and Biological Signaling. , 2015, Angewandte Chemie.

[8]  J. Chin,et al.  Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. , 2012, Nature chemistry.

[9]  Michael Z. Lin,et al.  A Single-Chain Photoswitchable CRISPR-Cas9 Architecture for Light-Inducible Gene Editing and Transcription , 2017, ACS chemical biology.

[10]  I. Dmochowski,et al.  Caged oligonucleotides for bidirectional photomodulation of let-7 miRNA in zebrafish embryos. , 2013, Bioorganic & medicinal chemistry.

[11]  P. Gorostiza,et al.  An allosteric modulator to control endogenous G protein-coupled receptors with light. , 2014, Nature chemical biology.

[12]  Xingshi Cai,et al.  A near-infrared two-photon-sensitive peptide-mediated liposomal delivery system. , 2015, Colloids and surfaces. B, Biointerfaces.

[13]  H. Lusic,et al.  Photochemical DNA activation. , 2007, Organic letters.

[14]  D. Trauner,et al.  Photoswitchable fatty acids enable optical control of TRPV1 , 2015, Nature Communications.

[15]  J. Martínez‐Costas,et al.  A Light-Modulated Sequence-Specific DNA-Binding Peptide , 2000 .

[16]  L. Nguyen,et al.  MicroRNA targeting of CoREST controls polarization of migrating cortical neurons. , 2014, Cell reports.

[17]  Xudong Cao,et al.  Comparative analysis of photocaged RGDS peptides for cell patterning. , 2013, Journal of biomedical materials research. Part A.

[18]  Simon H. Friedman,et al.  Light Control of Insulin Release and Blood Glucose Using an Injectable Photoactivated Depot , 2016, Molecular pharmaceutics.

[19]  Lalintip Hocharoen,et al.  Targeted catalytic inactivation of angiotensin converting enzyme by lisinopril-coupled transition-metal chelates. , 2012, Journal of the American Chemical Society.

[20]  D. Lawrence,et al.  The Plasma Membrane as a Reservoir, Protective Shield, and Light-Triggered Launch Pad for Peptide Therapeutics. , 2016, Angewandte Chemie.

[21]  A. Mokhir,et al.  RNA interference controlled by light of variable wavelength. , 2014, Angewandte Chemie.

[22]  Devin Strickland,et al.  Optical Control of Peroxisomal Trafficking , 2015, ACS synthetic biology.

[23]  E. Akkaya,et al.  Near-IR-triggered, remote-controlled release of metal ions: a novel strategy for caged ions. , 2014, Angewandte Chemie.

[24]  B. Imperiali,et al.  Caged mono- and divalent ligands for light-assisted disruption of PDZ domain-mediated interactions. , 2013, Journal of the American Chemical Society.

[25]  Itamar Willner,et al.  DNA switches: from principles to applications. , 2015, Angewandte Chemie.

[26]  S. Friedman,et al.  Construction of a photoactivated insulin depot. , 2013, Angewandte Chemie.

[27]  J. A. Hendricks,et al.  Light Controlled Modulation of Gene Expression by Chemical Optoepigenetic Probes , 2016, Nature chemical biology.

[28]  Jasmin Wagner,et al.  Regulation der Angiogenese durch lichtinduzierbare AntimiRs , 2013 .

[29]  H. Asanuma,et al.  Visible-Light-Triggered Cross-Linking of DNA Duplexes by Reversible [2+2] Photocycloaddition of Styrylpyrene. , 2016, Chemistry.

[30]  Pradeep Kota,et al.  Engineered allosteric activation of kinases in living cells , 2010, Nature Biotechnology.

[31]  Ehud Y. Isacoff,et al.  Optical Control of Endogenous Proteins with a Photoswitchable Conditional Subunit Reveals a Role for TREK1 in GABAB Signaling , 2012, Neuron.

[32]  M. Fukuda,et al.  Photochemical generation of oligodeoxynucleotide containing a C4'-oxidized abasic site and its efficient amine modification: dependence on structure and microenvironment. , 2008, The Journal of organic chemistry.

[33]  A. Heckel,et al.  Dependence of aptamer activity on opposed terminal extensions: improvement of light-regulation efficiency , 2009, Nucleic acids research.

[34]  T. Ohtsuki,et al.  Cellular siRNA delivery mediated by a cell-permeant RNA-binding protein and photoinduced RNA interference. , 2008, Bioconjugate chemistry.

[35]  Yang Yang,et al.  Photolabile-caged peptide-conjugated liposomes for siRNA delivery , 2015, Journal of drug targeting.

[36]  H. Ball,et al.  Manipulating Cell Migration and Proliferation with a Light‐Activated Polypeptide , 2009, Chembiochem : a European journal of chemical biology.

[37]  C. O’Sullivan,et al.  Sensitive detection of cancer cells using light-mediated apta-PCR. , 2016, Methods.

[38]  Michael E. Hahn,et al.  Manipulating proteins with chemistry: a cross-section of chemical biology. , 2005, Trends in biochemical sciences.

[39]  Q. Guo,et al.  Photoregulation of thrombin aptamer activity using Bhc caging strategy. , 2009, Bioorganic & medicinal chemistry letters.

[40]  Kevan M Shokat,et al.  Features of selective kinase inhibitors. , 2005, Chemistry & biology.

[41]  Dirk Trauner,et al.  Orthogonal Optical Control of a G Protein-Coupled Receptor with a SNAP-Tethered Photochromic Ligand , 2015, ACS central science.

[42]  Moritoshi Sato,et al.  CRISPR-Cas9-based photoactivatable transcription system. , 2015, Chemistry & biology.

[43]  D. Neri,et al.  Antibody-drug conjugates: basic concepts, examples and future perspectives. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[44]  K. Shokat,et al.  The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. , 2011, Annual review of biochemistry.

[45]  Brian Kuhlman,et al.  Light-induced nuclear export reveals rapid dynamics of epigenetic modifications , 2016, Nature chemical biology.

[46]  A. Deiters,et al.  Optical Control of DNA Helicase Function through Genetic Code Expansion , 2017, Chembiochem : a European journal of chemical biology.

[47]  A. Heckel,et al.  Light regulation of aptamer activity: an anti-thrombin aptamer with caged thymidine nucleobases. , 2005, Journal of the American Chemical Society.

[48]  Steven G. Chaulk,et al.  Caged RNA: photo-control of a ribozyme reaction , 1998, Nucleic Acids Res..

[49]  B. Feringa,et al.  Orthogonal control of antibacterial activity with light. , 2014, ACS chemical biology.

[50]  R. Hesketh,et al.  Targeting tumour vasculature: the development of combretastatin A4. , 2001, The Lancet. Oncology.

[51]  A. MacMillan,et al.  Separation of Spliceosome Assembly from Catalysis with Caged pre-mRNA Substrates. , 2001, Angewandte Chemie.

[52]  E. Isacoff,et al.  Allosteric control of an ionotropic glutamate receptor with an optical switch , 2006, Nature chemical biology.

[53]  John J Rossi,et al.  RNA Interference (RNAi)-Based Therapeutics: Delivering on the Promise? , 2016, Annual review of pharmacology and toxicology.

[54]  D. Hilvert,et al.  Modulating PNA/DNA hybridization by light. , 2010, Angewandte Chemie.

[55]  Sylvie Maurin,et al.  Coumarinylmethyl caging groups with redshifted absorption. , 2013, Chemistry.

[56]  Synthesis of FMRFaNV, a Photoreleasable Caged Transmitter Designed to Study Neuron-Glia Interactions in the Central Nervous System. , 2015, Bioconjugate chemistry.

[57]  Kai Johnsson,et al.  How to obtain labeled proteins and what to do with them. , 2010, Current opinion in biotechnology.

[58]  C. Dumontet,et al.  Microtubule-binding agents: a dynamic field of cancer therapeutics , 2010, Nature Reviews Drug Discovery.

[59]  H. Lusic,et al.  Optochemical control of RNA interference in mammalian cells , 2013, Nucleic acids research.

[60]  James K. Chen,et al.  Spatiotemporal control of embryonic gene expression using caged morpholinos. , 2011, Methods in cell biology.

[61]  I. Dmochowski,et al.  Caged oligonucleotides for studying biological systems. , 2015, Journal of inorganic biochemistry.

[62]  A. Deiters,et al.  Photocaged T7 RNA Polymerase for the Light Activation of Transcription and Gene Function in Pro‐ and Eukaryotic Cells , 2010, Chembiochem : a European journal of chemical biology.

[63]  C. Gersbach,et al.  A light-inducible CRISPR/Cas9 system for control of endogenous gene activation , 2015, Nature chemical biology.

[64]  V. Kadambi,et al.  Antibody drug conjugates - Trojan horses in the war on cancer. , 2011, Journal of pharmacological and toxicological methods.

[65]  V. Malhotra,et al.  Golgi Membranes Remain Segregated from the Endoplasmic Reticulum during Mitosis in Mammalian Cells , 2004, Cell.

[66]  J. Francois,et al.  DNA enzymes as potential therapeutics: towards clinical application of 10-23 DNAzymes , 2015, Expert opinion on biological therapy.

[67]  B. Williams,et al.  Light controllable siRNAs regulate gene suppression and phenotypes in cells. , 2006, Biochimica et biophysica acta.

[68]  H. Lusic,et al.  Light-triggered polymerase chain reaction. , 2008, Chemical communications.

[69]  J. T. Lightfoot,et al.  Vivo-Morpholinos Induced Transient Knockdown of Physical Activity Related Proteins , 2013, PloS one.

[70]  N. Devaraj,et al.  Fluorescent turn-on probes for wash-free mRNA imaging via covalent site-specific enzymatic labeling† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc03150e Click here for additional data file. , 2017, Chemical science.

[71]  A. Deiters,et al.  Site-Specific Promoter Caging Enables Optochemical Gene Activation in Cells and Animals , 2014, Journal of the American Chemical Society.

[72]  G. Ellis‐Davies,et al.  Spectral evolution of a photochemical protecting group for orthogonal two-color uncaging with visible light. , 2013, Journal of the American Chemical Society.

[73]  H. Asanuma,et al.  Construction of photoresponsive RNA for photoswitching RNA hybridization. , 2010, Organic & biomolecular chemistry.

[74]  Chaoran Jing,et al.  Chemical tags for labeling proteins inside living cells. , 2011, Accounts of chemical research.

[75]  D. Trauner,et al.  A roadmap to success in photopharmacology. , 2015, Accounts of Chemical Research.

[76]  A. Tong,et al.  Postsynthetic Modification of DNA Phosphodiester Backbone for Photocaged DNAzyme. , 2016, ACS chemical biology.

[77]  V. Hagen,et al.  Mechanism of photocleavage of (coumarin-4-yl)methyl esters. , 2007, The journal of physical chemistry. A.

[78]  Kathryn L Haas,et al.  A Photo-Caged Platinum(II) Complex That Increases Cytotoxicity upon Light Activation , 2010 .

[79]  Q. Guo,et al.  New quinoline-based caging groups synthesized for photo-regulation of aptamer activity , 2010 .

[80]  Günter Mayer,et al.  Functional detection of proteins by caged aptamers. , 2012, ACS chemical biology.

[81]  A. Gewirtz,et al.  Regulating gene expression in human leukemia cells using light-activated oligodeoxynucleotides , 2007, Nucleic acids research.

[82]  P. Schultz,et al.  The incorporation of a photoisomerizable amino acid into proteins in E. coli. , 2006, Journal of the American Chemical Society.

[83]  Alexander Deiters,et al.  Regulation of transcription through light-activation and light-deactivation of triplex-forming oligonucleotides in mammalian cells. , 2012, ACS chemical biology.

[84]  Ravi S Kane,et al.  At Light Speed: Advances in Optogenetic Systems for Regulating Cell Signaling and Behavior. , 2017, Annual review of chemical and biomolecular engineering.

[85]  Fatih Ozsolak,et al.  RNA sequencing: advances, challenges and opportunities , 2011, Nature Reviews Genetics.

[86]  A. Heckel,et al.  Azobenzene C-Nucleosides for Photocontrolled Hybridization of DNA at Room Temperature. , 2015, Chemistry.

[87]  R. Wombacher,et al.  Light-induced protein dimerization by one- and two-photon activation of gibberellic acid derivatives in living cells. , 2015, Angewandte Chemie.

[88]  Y. Wang,et al.  Caged circular antisense oligonucleotides for photomodulation of RNA digestion and gene expression in cells , 2012, Nucleic acids research.

[89]  Xinjing Tang,et al.  Photomodulating RNA cleavage using photolabile circular antisense oligodeoxynucleotides , 2010, Nucleic acids research.

[90]  J. Chin,et al.  Genetically encoded light-activated transcription for spatiotemporal control of gene expression and gene silencing in mammalian cells. , 2013, Journal of the American Chemical Society.

[91]  B. Imperiali,et al.  Sequential activation and deactivation of protein function using spectrally differentiated caged phosphoamino acids. , 2011, Journal of the American Chemical Society.

[92]  Neville E. Sanjana,et al.  High-throughput functional genomics using CRISPR–Cas9 , 2015, Nature Reviews Genetics.

[93]  A. Heckel,et al.  Light-controlled tools. , 2012, Angewandte Chemie.

[94]  Alexander Deiters,et al.  Optical Control of CRISPR/Cas9 Gene Editing. , 2015, Journal of the American Chemical Society.

[95]  M. Engelhard,et al.  Photocontrol of STAT6 dimerization and translocation. , 2010, Molecular bioSystems.

[96]  I. Dmochowski,et al.  RNA bandages for photoregulating in vitro protein synthesis. , 2008, Bioorganic & medicinal chemistry letters.

[97]  Douglas D Young,et al.  Activation and deactivation of DNAzyme and antisense function with light for the photochemical regulation of gene expression in mammalian cells. , 2010, Journal of the American Chemical Society.

[98]  C. Hoppmann,et al.  In Situ Formation of an Azo Bridge on Proteins Controllable by Visible Light. , 2015, Journal of the American Chemical Society.

[99]  Yang Yang,et al.  A photo-responsive peptide- and asparagine–glycine–arginine (NGR) peptide-mediated liposomal delivery system , 2016, Drug delivery.

[100]  Weihong Tan,et al.  Caged molecular beacons: controlling nucleic acid hybridization with light. , 2011, Chemical communications.

[101]  Philipp Reautschnig,et al.  The notorious R.N.A. in the spotlight - drug or target for the treatment of disease , 2016, RNA biology.

[102]  B. Spengler,et al.  Controlling the enzymatic activity of a restriction enzyme by light , 2009, Proceedings of the National Academy of Sciences.

[103]  Shu Jia,et al.  Ultra-bright Photoactivatable Fluorophores Created by Reductive Caging , 2012, Nature Methods.

[104]  Taleen Jerjian,et al.  Antibody‐Drug Conjugates: A Clinical Pharmacy Perspective on an Emerging Cancer Therapy , 2016, Pharmacotherapy.

[105]  G. Ellis‐Davies,et al.  The nitrodibenzofuran chromophore: a new caging group for ultra-efficient photolysis in living cells , 2005, Nature Methods.

[106]  Alexander Deiters,et al.  DNA computation in mammalian cells: microRNA logic operations. , 2013, Journal of the American Chemical Society.

[107]  T. Narumi,et al.  Synthetic Caged DAG‐lactones for Photochemically Controlled Activation of Protein Kinase C , 2011, Chembiochem : a European journal of chemical biology.

[108]  J. Chin,et al.  Genetically encoded photocontrol of protein localization in mammalian cells. , 2010, Journal of the American Chemical Society.

[109]  Weihong Tan,et al.  DNA branch migration reactions through photocontrollable toehold formation. , 2013, Journal of the American Chemical Society.

[110]  Herwig Baier,et al.  Remote Control of Neuronal Activity with a Light-Gated Glutamate Receptor , 2007, Neuron.

[111]  D. Toomre,et al.  A Phosphoinositide Switch Controls the Maturation and Signaling Properties of APPL Endosomes , 2009, Cell.

[112]  C. Barbas,et al.  ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. , 2013, Trends in biotechnology.

[113]  T. Kodadek,et al.  Rapid Development of a Potent Photo‐triggered Inhibitor of the Serine Hydrolase RBBP9 , 2012, Chembiochem : a European journal of chemical biology.

[114]  K. Fujimoto,et al.  Photo-Cross-Linking Reaction in Nucleic Acids: Chemistry and Applications , 2016 .

[115]  F. Bonhoeffer,et al.  Chromophore-assisted laser inactivation of a repulsive axonal guidance molecule , 1996, Current Biology.

[116]  A. Rentmeister,et al.  Reversible modification of DNA by methyltransferase-catalyzed transfer and light-triggered removal of photo-caging groups. , 2018, Chemical communications.

[117]  A. Schuler,et al.  PhotoMorphs™: A novel light‐activated reagent for controlling gene expression in zebrafish , 2009, Genesis.

[118]  Thorsten Stafforst,et al.  Photokontrolle der PNA‐DNA‐Hybridisierung , 2010 .

[119]  S. Hecht,et al.  o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light. , 2012, Journal of the American Chemical Society.

[120]  E. Isacoff,et al.  Photoswitching of cell surface receptors using tethered ligands. , 2014, Methods in molecular biology.

[121]  Wen-hong Li,et al.  Photoactivatable fluorophores and techniques for biological imaging applications , 2012, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[122]  R. Mart,et al.  Azobenzene photocontrol of peptides and proteins. , 2016, Chemical communications.

[123]  J. Eberwine,et al.  Ruthenium-caged antisense morpholinos for regulating gene expression in zebrafish embryos , 2015, Chemical science.

[124]  U. Diederichsen,et al.  Nucleobase‐caged peptide nucleic acids: PNA/PNA duplex destabilization and light‐triggered PNA/PNA recognition , 2013, Journal of peptide science : an official publication of the European Peptide Society.

[125]  Carsten Schultz,et al.  Photoswitchable diacylglycerols enable optical control of protein kinase C. , 2016, Nature chemical biology.

[126]  Jun Noguchi,et al.  GABA promotes the competitive selection of dendritic spines by controlling local Ca2+ signaling , 2013, Nature Neuroscience.

[127]  D. Lawrence,et al.  Light-mediated liberation of enzymatic activity: "small molecule" caged protein equivalents. , 2008, Journal of the American Chemical Society.

[128]  Yi-Tao Yu,et al.  Targeted pre-mRNA modification for gene silencing and regulation , 2008, Nature Methods.

[129]  Mithun Biswas,et al.  Reversible photoswitching of RNA hybridization at room temperature with an azobenzene C-nucleoside. , 2015, Chemistry.

[130]  Fu-Sen Liang,et al.  Light Control of Cellular Processes by Using Photocaged Abscisic Acid , 2015, Chembiochem : a European journal of chemical biology.

[131]  G. Ellis‐Davies,et al.  Caged compounds for multichromic optical interrogation of neural systems , 2015, The European journal of neuroscience.

[132]  Piyush K Jain,et al.  Development of Light-Activated CRISPR Using Guide RNAs with Photocleavable Protectors. , 2016, Angewandte Chemie.

[133]  Murat Cirit,et al.  Systematic Quantification of Negative Feedback Mechanisms in the Extracellular Signal-regulated Kinase (erk) Signaling Network * □ S Experimental Procedures Data-driven Modeling of Feedback Regulating Erk Signaling Data-driven Modeling of Feedback Regulating Erk Signaling Data-driven Modeling of Fee , 2022 .

[134]  D. Harki,et al.  Catch and Release DNA Decoys: Capture and Photochemical Dissociation of NF-κB Transcription Factors. , 2016, ACS chemical biology.

[135]  B. Cui,et al.  Optogenetic control of intracellular signaling pathways. , 2015, Trends in biotechnology.

[136]  Paul Vogel,et al.  Improving site-directed RNA editing in vitro and in cell culture by chemical modification of the guideRNA. , 2014, Angewandte Chemie.

[137]  H. Asanuma,et al.  p-Stilbazole moieties as artificial base pairs for photo-cross-linking of DNA duplex. , 2013, Journal of the American Chemical Society.

[138]  A. Heckel,et al.  Light-dependent RNA interference with nucleobase-caged siRNAs. , 2007, RNA.

[139]  I. Dmochowski,et al.  Turning the 10–23 DNAzyme On and Off with Light , 2010, Chembiochem : a European journal of chemical biology.

[140]  O. Hobert,et al.  Temporal and spatial regulation of microRNA activity with photoactivatable cantimirs. , 2011, ACS chemical biology.

[141]  Y. Hori,et al.  Photocontrolled compound release system using caged antimicrobial peptide. , 2010, Journal of the American Chemical Society.

[142]  J. Heemstra,et al.  Temporal Control of Aptamer Biosensors Using Covalent Self-Caging To Shift Equilibrium. , 2016, Journal of the American Chemical Society.

[143]  Anatol C. Kreitzer,et al.  Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry , 2010, Nature.

[144]  David S Lawrence,et al.  Illuminating the chemistry of life: design, synthesis, and applications of "caged" and related photoresponsive compounds. , 2009, ACS chemical biology.

[145]  Günter Mayer,et al.  Biologically active molecules with a "light switch". , 2006, Angewandte Chemie.

[146]  James K. Chen,et al.  Sequential gene silencing using wavelength-selective caged morpholino oligonucleotides. , 2014, Angewandte Chemie.

[147]  A. Losonczy,et al.  Regulation of neuronal input transformations by tunable dendritic inhibition , 2012, Nature Neuroscience.

[148]  Hana Cahová,et al.  Nucleoside-based diarylethene photoswitches and their facile incorporation into photoswitchable DNA. , 2013, Angewandte Chemie.

[149]  P. Senter Potent antibody drug conjugates for cancer therapy. , 2009, Current opinion in chemical biology.

[150]  V. Hartenstein,et al.  Development genes and evolution - Founded as Roux's archives of development biology , 2004 .

[151]  Hiroshi Suzuki,et al.  SuperNova, a monomeric photosensitizing fluorescent protein for chromophore-assisted light inactivation , 2013, Scientific Reports.

[152]  Justin D. Vrana,et al.  Optogenetic control of cell function using engineered photoreceptors , 2013, Biology of the cell.

[153]  B. White,et al.  Chemically controlled protein assembly: techniques and applications. , 2010, Chemical reviews.

[154]  Korwin M. Schelkle,et al.  Lichtinduzierte Proteindimerisierung in lebenden Zellen durch Ein- und Zweiphotonenaktivierung von Gibberellinsäurederivaten† , 2015 .

[155]  J. Chin,et al.  Genetically encoded optical activation of DNA recombination in human cells† †Electronic supplementary information (ESI) available: Experimental protocols. See DOI: 10.1039/c6cc03934k Click here for additional data file. , 2016, Chemical communications.

[156]  A. Saliba,et al.  Single-cell RNA-seq: advances and future challenges , 2014, Nucleic acids research.

[157]  Fangli Zhao,et al.  ortho-Fluoroazobenzenes: visible light switches with very long-Lived Z isomers. , 2014, Chemistry.

[158]  A. Heckel,et al.  Photo-Tethers for the (Multi-)Cyclic, Conformational Caging of Long Oligonucleotides. , 2017, Angewandte Chemie.

[159]  M. Lampson,et al.  Localized light-induced protein dimerization in living cells using a photocaged dimerizer , 2014, Nature Communications.

[160]  C. Turro,et al.  Cellular toxicity induced by the photorelease of a caged bioactive molecule: design of a potential dual-action Ru(II) complex. , 2013, Journal of the American Chemical Society.

[161]  J. Chin,et al.  Encoding optical control in LCK kinase to quantitatively investigate its activity in live cells , 2017, Nature Structural & Molecular Biology.

[162]  R. Givens,et al.  Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms and Efficacy , 2012, Chemical reviews.

[163]  Whitney J. Walker,et al.  Tbx16 regulates hox gene activation in mesodermal progenitor cells , 2016, Nature chemical biology.

[164]  James K. Chen,et al.  Nitroreductase-Activatable Morpholino Oligonucleotides for in Vivo Gene Silencing , 2014, ACS chemical biology.

[165]  K. Deisseroth Optogenetics: 10 years of microbial opsins in neuroscience , 2015, Nature Neuroscience.

[166]  Samit Shah,et al.  Tolerance of RNA interference toward modifications of the 5' antisense phosphate of small interfering RNA. , 2007, Oligonucleotides.

[167]  Hui-wang Ai,et al.  Light activation of protein splicing with a photocaged fast intein. , 2015, Journal of the American Chemical Society.

[168]  D. Burns,et al.  Kinetic characterization of ribonuclease S mutants containing photoisomerizable phenylazophenylalanine residues. , 2001, Protein engineering.

[169]  Takanari Inoue,et al.  A photocleavable rapamycin conjugate for spatiotemporal control of small GTPase activity. , 2011, Journal of the American Chemical Society.

[170]  Y. Zu,et al.  Oligonucleotide Aptamers: New Tools for Targeted Cancer Therapy , 2014, Molecular therapy. Nucleic acids.

[171]  M. Wymann,et al.  Cell-Permeant and Photocleavable Chemical Inducer of Dimerization** , 2014, Angewandte Chemie.

[172]  Dynamics of Inter-DNA Chain Interaction of Photoresponsive DNA. , 2016, Journal of the American Chemical Society.

[173]  B. Feringa,et al.  Orthogonal photoswitching in a multifunctional molecular system , 2016, Nature Communications.

[174]  J. W.,et al.  The Journal of Physical Chemistry , 1900, Nature.

[175]  D. Raines,et al.  Azo-propofols: photochromic potentiators of GABA(A) receptors. , 2012, Angewandte Chemie.

[176]  K. Hahn,et al.  Light regulation of protein dimerization and kinase activity in living cells using photocaged rapamycin and engineered FKBP. , 2011, Journal of the American Chemical Society.

[177]  K. Kawakami,et al.  Photoactivation of the CreER T2 recombinase for conditional site-specific recombination with high spatiotemporal resolution. , 2010, Zebrafish.

[178]  Controlling the origins of inflammation with a photoactive lipopeptide immunopotentiator. , 2015, Angewandte Chemie.

[179]  Christopher A. Voigt,et al.  The promise of optogenetics in cell biology: interrogating molecular circuits in space and time , 2011, Nature Methods.

[180]  I. Mérida,et al.  Shaping up the membrane: diacylglycerol coordinates spatial orientation of signaling. , 2011, Trends in biochemical sciences.

[181]  F. Armstrong,et al.  Current opinion in chemical biology. , 2012, Current opinion in chemical biology.

[182]  Water-soluble, donor-acceptor biphenyl derivatives in the 2-(o-nitrophenyl)propyl series: highly efficient two-photon uncaging of the neurotransmitter γ-aminobutyric acid at λ = 800 nm. , 2012, Angewandte Chemie.

[183]  Randall J. Platt,et al.  Therapeutic genome editing: prospects and challenges , 2015, Nature Medicine.

[184]  Corey W. Liu,et al.  Characterization of the FKBP.rapamycin.FRB ternary complex. , 2005, Journal of the American Chemical Society.

[185]  M. Iino,et al.  Selective photoinactivation of protein function through environment-sensitive switching of singlet oxygen generation by photosensitizer , 2008, Proceedings of the National Academy of Sciences.

[186]  Andrew V. Anzalone,et al.  Synthesis of photoactivatable azido-acyl caged oxazine fluorophores for live-cell imaging. , 2016, Chemical communications.

[187]  Ericka B. Ramko,et al.  A Genetically Encoded Tag for Correlated Light and Electron Microscopy of Intact Cells, Tissues, and Organisms , 2011, PLoS biology.

[188]  J. Iwahara,et al.  Regulation of transcription factors via natural decoys in genomic DNA , 2016, Transcription.

[189]  S. Burdette,et al.  Following the Ca²⁺ roadmap to photocaged complexes for Zn²⁺ and beyond. , 2013, Current opinion in chemical biology.

[190]  Günter Mayer,et al.  From selection to caged aptamers: identification of light-dependent ssDNA aptamers targeting cytohesin. , 2009, Bioorganic & medicinal chemistry letters.

[191]  A. Deiters,et al.  Photochemical control of DNA decoy function enables precise regulation of nuclear factor κB activity. , 2011, Journal of the American Chemical Society.

[192]  Sagar D. Khare,et al.  Computational Design of a Photocontrolled Cytosine Deaminase. , 2018, Journal of the American Chemical Society.

[193]  K. Jalink,et al.  Optotaxis: Caged Lysophosphatidic Acid Enables Optical Control of a Chemotactic Gradient. , 2016, Cell chemical biology.

[194]  Michael A. Lampson,et al.  Optogenetic control of organelle transport using a photocaged chemical inducer of dimerization , 2015, Current Biology.

[195]  S. Mackem,et al.  A Near-IR Uncaging Strategy Based on Cyanine Photochemistry , 2014, Journal of the American Chemical Society.

[196]  Matthew Weitzman,et al.  Optogenetic approaches to cell migration and beyond. , 2014, Current opinion in cell biology.

[197]  T. Furuta,et al.  Synthesis of nucleobase-caged peptide nucleic acids having improved photochemical properties. , 2014, Organic & biomolecular chemistry.

[198]  R. Mahato,et al.  Targeted TFO delivery to hepatic stellate cells. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[199]  Eric A. Vitriol,et al.  Chromophore-assisted laser inactivation in cell biology. , 2008, Trends in cell biology.

[200]  Hiroyuki Nakamura,et al.  Regulation of target protein knockdown and labeling using ligand-directed Ru(bpy)3 photocatalyst. , 2015, Bioconjugate chemistry.

[201]  M. Yazawa,et al.  A photoactivatable Cre-loxP recombination system for optogenetic genome engineering. , 2016, Nature chemical biology.

[202]  Shinzi Ogasawara Duration Control of Protein Expression in Vivo by Light-Mediated Reversible Activation of Translation. , 2017, ACS chemical biology.

[203]  D. Y. Zhang,et al.  Control of DNA strand displacement kinetics using toehold exchange. , 2009, Journal of the American Chemical Society.

[204]  Andrew J. Olson,et al.  Versatile Synthesis and Rational Design of Caged Morpholinos , 2009, Journal of the American Chemical Society.

[205]  A. Mokhir,et al.  'Caged' peptide nucleic acids activated by red light in a singlet oxygen mediated process. , 2013, Bioorganic & medicinal chemistry letters.

[206]  André Nadler,et al.  The fatty acid composition of diacylglycerols determines local signaling patterns. , 2013, Angewandte Chemie.

[207]  G. Mayer,et al.  Biologisch aktive Moleküle mit “Lichtschalter” , 2006 .

[208]  A. Prasad,et al.  Nucleic acid therapeutics: basic concepts and recent developments , 2014 .

[209]  Jason W. Chin,et al.  Selective, rapid and optically switchable regulation of protein function in live mammalian cells. , 2015, Nature chemistry.

[210]  A. Wojtovich,et al.  Optogenetic control of ROS production , 2014, Redox biology.

[211]  Control of Cellular Function by Reversible Photoregulation of Translation , 2014, Chembiochem : a European journal of chemical biology.

[212]  David Griffiths,et al.  Detection of Mixed Infection from Bacterial Whole Genome Sequence Data Allows Assessment of Its Role in Clostridium difficile Transmission , 2013, PLoS Comput. Biol..

[213]  B. Feringa,et al.  Ciprofloxacin-Photoswitch Conjugates: A Facile Strategy for Photopharmacology. , 2015, Bioconjugate chemistry.

[214]  Roger Y. Tsien,et al.  Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos , 2001, Nature Genetics.

[215]  G. Rutter,et al.  Optical control of insulin release using a photoswitchable sulfonylurea , 2014, Nature Communications.

[216]  M. Yamada,et al.  Photocontrol of kinesin ATPase activity using an azobenzene derivative. , 2007, Journal of biochemistry.

[217]  A. Zarrine-Afsar,et al.  Structure-based approach to the photocontrol of protein folding. , 2009, Journal of the American Chemical Society.

[218]  M. Komiyama,et al.  Site‐Selective Blocking of PCR by a Caged Nucleotide Leading to Direct Creation of Desired Sticky Ends in The Products , 2008, Chembiochem : a European journal of chemical biology.

[219]  M. Čemažar,et al.  Irradiation, Cisplatin, and 5-Azacytidine Upregulate Cytomegalovirus Promoter in Tumors and Muscles: Implementation of Non-invasive Fluorescence Imaging , 2010, Molecular Imaging and Biology.

[220]  R. Juliano,et al.  Conditional control of alternative splicing through light-triggered splice-switching oligonucleotides. , 2015, Journal of the American Chemical Society.

[221]  John A Wolf,et al.  Transcriptome In Vivo Analysis (TIVA) of spatially defined single cells in intact live mouse and human brain tissue , 2014, Nature Methods.

[222]  JohnB . Taylor,et al.  DESIGN AND SYNTHESIS OF A VERSATILE PHOTOCLEAVABLE DNA BUILDING BLOCK. APPLICATION TO PHOTOTRIGGERED HYBRIDIZATION , 1995 .

[223]  Xinjing Tang,et al.  Photochemical Regulation of Gene Expression Using Caged siRNAs with Single Terminal Vitamin E Modification. , 2016, Angewandte Chemie.

[224]  Alexander Deiters,et al.  Genetically Encoded Optochemical Probes for Simultaneous Fluorescence Reporting and Light Activation of Protein Function with Two-Photon Excitation , 2014, Journal of the American Chemical Society.

[225]  A. Gottschalk,et al.  AzoCholine Enables Optical Control of Alpha 7 Nicotinic Acetylcholine Receptors in Neural Networks. , 2015, ACS chemical neuroscience.

[226]  Takanari Inoue,et al.  Following Optogenetic Dimerizers and Quantitative Prospects. , 2016, Biophysical journal.

[227]  D. Trauner,et al.  The in vivo chemistry of photoswitched tethered ligands. , 2014, Current opinion in chemical biology.

[228]  J. Doudna,et al.  Expanding the Biologist's Toolkit with CRISPR-Cas9. , 2015, Molecular cell.

[229]  G. Ellis‐Davies,et al.  Calcium Uncaging with Visible Light. , 2016, Journal of the American Chemical Society.

[230]  Carsten Schultz,et al.  Die Fettsäurezusammensetzung von Diacylglycerinen bestimmt lokale Signalmuster , 2013 .

[231]  Samit Shah,et al.  Light-activated RNA interference. , 2005, Angewandte Chemie.

[232]  Katryn R. Harwood,et al.  Leveraging a Small‐Molecule Modification to Enable the Photoactivation of Rho GTPases , 2009, Chembiochem : a European journal of chemical biology.

[233]  Yang Yang,et al.  Dual-modified liposomes with a two-photon-sensitive cell penetrating peptide and NGR ligand for siRNA targeting delivery. , 2015, Biomaterials.

[234]  D. Sahlender,et al.  Rapid Inactivation of Proteins by Rapamycin-Induced Rerouting to Mitochondria , 2010, Developmental cell.

[235]  Cuichen Wu,et al.  A targeted, self-delivered, and photocontrolled molecular beacon for mRNA detection in living cells. , 2013, Journal of the American Chemical Society.

[236]  Maurice Goeldner,et al.  Phototriggering of cell adhesion by caged cyclic RGD peptides. , 2008, Angewandte Chemie.

[237]  Shigeki Iwanaga,et al.  Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores. , 2010, Journal of the American Chemical Society.

[238]  Yi-Tao Yu,et al.  Inducing nonsense suppression by targeted pseudouridylation , 2012, Nature Protocols.

[239]  M. Baaden,et al.  Photocontrol of Protein Activity in Cultured Cells and Zebrafish with One‐ and Two‐Photon Illumination , 2010, Chembiochem : a European journal of chemical biology.

[240]  Carsten Schultz,et al.  Protein translocation as a tool: The current rapamycin story , 2012, FEBS letters.

[241]  M. Kazanietz,et al.  C1 domains exposed: from diacylglycerol binding to protein-protein interactions. , 2006, Biochimica et biophysica acta.

[242]  D. Tautz,et al.  Chromophore-assisted laser inactivation of even skipped in Drosophila precisely phenocopies genetic loss of function , 1996, Development Genes and Evolution.

[243]  Christopher A. Voigt,et al.  Spatiotemporal Control of Cell Signalling Using A Light-Switchable Protein Interaction , 2009, Nature.

[244]  Juan A. González-Vera,et al.  Fluorescent Reporters and Biosensors for Probing the Dynamic Behavior of Protein Kinases , 2015, Proteomes.

[245]  P. Glazer,et al.  Triplex-mediated gene modification. , 2008, Methods in molecular biology.

[246]  K. B. Joshi,et al.  Light-activatable molecular beacons with a caged loop sequence. , 2012, Chemical communications.

[247]  Aklank Jain,et al.  Mechanisms of triplex DNA-mediated inhibition of transcription initiation in cells. , 2010, Biochimie.

[248]  G. Ellis‐Davies,et al.  Optically selective two-photon uncaging of glutamate at 900 nm. , 2013, Journal of the American Chemical Society.

[249]  S. Zakian,et al.  TALEN and CRISPR/Cas Genome Editing Systems: Tools of Discovery , 2014, Acta naturae.

[250]  Konstantin A Lukyanov,et al.  A genetically encoded photosensitizer , 2006, Nature Biotechnology.

[251]  P. Neveu,et al.  A caged retinoic acid for one- and two-photon excitation in zebrafish embryos. , 2008, Angewandte Chemie.

[252]  A. Heckel,et al.  Three-Dimensional Control of DNA Hybridization by Orthogonal Two-Color Two-Photon Uncaging. , 2016, Angewandte Chemie.

[253]  Joseph P Noel,et al.  Genetically encoding photoswitchable click amino acids in Escherichia coli and mammalian cells. , 2014, Angewandte Chemie.

[254]  Hong Liu,et al.  Ultrasound-responsive nanobubbles contained with peptide–camptothecin conjugates for targeted drug delivery , 2016, Drug delivery.

[255]  Ludovic Jullien,et al.  How to control proteins with light in living systems. , 2014, Nature chemical biology.

[256]  H. Lusic,et al.  Gene Silencing in Mammalian Cells with Light‐Activated Antisense Agents , 2008, Chembiochem : a European journal of chemical biology.

[257]  Y. Wang,et al.  Manipulation of gene expression in zebrafish using caged circular morpholino oligomers , 2012, Nucleic acids research.

[258]  T. Ohtsuki,et al.  Photo inducible RNA interference using cell permeable protein carrier. , 2007, Nucleic acids symposium series.

[259]  C. Kirkpatrick,et al.  Photoactivatable Caged Cyclic RGD Peptide for Triggering Integrin Binding and Cell Adhesion to Surfaces , 2011, Chembiochem : a European journal of chemical biology.

[260]  Morgan L. Maeder,et al.  Genome-editing Technologies for Gene and Cell Therapy , 2016, Molecular therapy : the journal of the American Society of Gene Therapy.

[261]  Hisataka Kobayashi,et al.  Near-IR Light-Mediated Cleavage of Antibody-Drug Conjugates Using Cyanine Photocages. , 2015, Angewandte Chemie.

[262]  J. Summerton,et al.  Morpholino antisense oligomers: design, preparation, and properties. , 1997, Antisense & nucleic acid drug development.

[263]  C. Alberini,et al.  Transcription factors in long-term memory and synaptic plasticity. , 2009, Physiological reviews.

[264]  David S Lawrence,et al.  The preparation and in vivo applications of caged peptides and proteins. , 2005, Current opinion in chemical biology.

[265]  A. Deiters,et al.  Control of oncogenic miRNA function by light-activated miRNA antagomirs. , 2014, Methods in molecular biology.

[266]  N. Allbritton,et al.  Measurement of Protein Kinase B Activity in Single Primary Human Pancreatic Cancer Cells , 2014, Analytical chemistry.

[267]  Xingguo Liang,et al.  Effect of the ortho modification of azobenzene on the photoregulatory efficiency of DNA hybridization and the thermal stability of its cis form. , 2010, Chemistry.

[268]  S. Zahler,et al.  Photoswitchable Inhibitors of Microtubule Dynamics Optically Control Mitosis and Cell Death , 2015, Cell.

[269]  F. Imamura,et al.  Induction of in vitro tumor cell invasion of cellular monolayers by lysophosphatidic acid or phospholipase D. , 1993, Biochemical and biophysical research communications.

[270]  A. Mokhir,et al.  1,9-Dialkoxyanthracene as a (1)O2-sensitive linker. , 2011, Journal of the American Chemical Society.

[271]  Yi Lu,et al.  Photocaged DNAzymes as a general method for sensing metal ions in living cells. , 2014, Angewandte Chemie.

[272]  Jasmin Wagner,et al.  Regulating angiogenesis with light-inducible AntimiRs. , 2013, Angewandte Chemie.

[273]  Thorsten Stafforst,et al.  Chemisch modifizierte guideRNAs verbessern die ortsgerichtete RNA‐Editierung in vitro und in Zellkultur , 2014 .

[274]  Wiktor Szymanski,et al.  Recent developments in reversible photoregulation of oligonucleotide structure and function. , 2017, Chemical Society reviews.

[275]  A. Deiters,et al.  Light-activated Cre recombinase as a tool for the spatial and temporal control of gene function in mammalian cells. , 2009, ACS chemical biology.

[276]  Xingguo Liang,et al.  A light-driven DNA nanomachine for the efficient photoswitching of RNA digestion. , 2010, Angewandte Chemie.

[277]  Andreas Krämer,et al.  Toward Photopharmacological Antimicrobial Chemotherapy Using Photoswitchable Amidohydrolase Inhibitors. , 2017, ACS infectious diseases.

[278]  Mark J. Miller,et al.  Two-Photon Imaging of Lymphocyte Motility and Antigen Response in Intact Lymph Node , 2002, Science.

[279]  Jennifer R. Shell,et al.  Tunable visible and near-IR photoactivation of light-responsive compounds by using fluorophores as light-capturing antennas. , 2014, Angewandte Chemie.

[280]  T. Smart,et al.  Azogabazine; a photochromic antagonist of the GABAA receptor. , 2016, Organic & biomolecular chemistry.

[281]  H. Overkleeft,et al.  Proteasome Inhibitors with Photocontrolled Activity , 2014, Chembiochem : a European journal of chemical biology.

[282]  Photosensitizing carrier proteins for photoinducible RNA interference. , 2011, Bioconjugate chemistry.

[283]  A. Miyawaki,et al.  Chromophore-assisted light inactivation of HaloTag fusion proteins labeled with eosin in living cells. , 2011, ACS chemical biology.

[284]  N. Wade Trends in Biochemical Sciences: Mutlose Redakteure , 1980 .

[285]  J. Eisen,et al.  Controlling morpholino experiments: don't stop making antisense , 2008, Development.

[286]  K. Wakabayashi,et al.  Incorporation of an azobenzene derivative into the energy transducing site of skeletal muscle myosin results in photo-induced conformational changes. , 2004, Journal of biochemistry.

[287]  D. Trauner,et al.  Development of a new photochromic ion channel blocker via azologization of fomocaine. , 2014, ACS chemical neuroscience.

[288]  David M. Prescott,et al.  Methods in Cell Biology, Vol. 6 , 1974 .

[289]  S. Manley,et al.  A caged, localizable rhodamine derivative for superresolution microscopy. , 2012, ACS chemical biology.

[290]  J. Chin,et al.  Genetic Encoding of Photocaged Cysteine Allows Photoactivation of TEV Protease in Live Mammalian Cells , 2014, Journal of the American Chemical Society.

[291]  J. Alexander,et al.  Targeting Expression with Light Using Caged DNA* , 1999, The Journal of Biological Chemistry.

[292]  Kristi S Anseth,et al.  Wavelength-controlled photocleavage for the orthogonal and sequential release of multiple proteins. , 2013, Angewandte Chemie.

[293]  D. Lawrence,et al.  Vitamin B12: a tunable, long wavelength, light-responsive platform for launching therapeutic agents. , 2015, Accounts of chemical research.

[294]  Surajit Sinha,et al.  Light-controlled gene silencing in zebrafish embryos. , 2007, Nature chemical biology.

[295]  A. Deiters,et al.  Optical control of protein function through unnatural amino acid mutagenesis and other optogenetic approaches. , 2014, ACS chemical biology.

[296]  T. Kodadek,et al.  Potent and Selective Photo-inactivation of Proteins With Peptoid-Ruthenium Conjugates , 2010, Nature chemical biology.

[297]  H. Lusic,et al.  Photocaged morpholino oligomers for the light-regulation of gene function in zebrafish and Xenopus embryos. , 2010, Journal of the American Chemical Society.

[298]  B. Feringa,et al.  Optical control of antibacterial activity. , 2013, Nature chemistry.

[299]  N. Dokholyan,et al.  Light-cleavable Rapamycin Dimer as an Optical Trigger for Protein Dimerization † Chemcomm Communication , 2022 .

[300]  E. Isacoff,et al.  Light-activated ion channels for remote control of neuronal firing , 2004, Nature Neuroscience.

[301]  Itamar Willner,et al.  DNA-Schalter: Grundlagen und Anwendungen , 2015 .

[302]  Jianmin Wu,et al.  The kinome 'at large' in cancer , 2016, Nature Reviews Cancer.

[303]  Robert DeRose,et al.  Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology , 2013, Pflügers Archiv - European Journal of Physiology.

[304]  Yuta Nihongaki,et al.  Photoactivatable CRISPR-Cas9 for optogenetic genome editing , 2015, Nature Biotechnology.

[305]  Alexander Prokup,et al.  Optically Controlled Signal Amplification for DNA Computation. , 2015, ACS synthetic biology.

[306]  Laura Klewer,et al.  Chemically induced dimerization: reversible and spatiotemporal control of protein function in cells. , 2015, Current opinion in chemical biology.

[307]  C. Bennett,et al.  RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. , 2010, Annual review of pharmacology and toxicology.

[308]  S. Burdette,et al.  Photochemical tools for studying metal ion signaling and homeostasis. , 2012, Biochemistry.

[309]  N. Gagey-Eilstein,et al.  A blue-absorbing photolabile protecting group for in vivo chromatically orthogonal photoactivation. , 2013, ACS chemical biology.

[310]  W. Lubitz,et al.  A caged substrate peptide for matrix metalloproteinases , 2015, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[311]  D. Lawrence,et al.  Construction of a photoactivatable profluorescent enzyme via propinquity labeling. , 2011, Journal of the American Chemical Society.

[312]  Walter Kolch,et al.  Functional proteomics to dissect tyrosine kinase signalling pathways in cancer , 2010, Nature Reviews Cancer.

[313]  D. Lawrence,et al.  Dual wavelength photoactivation of cAMP- and cGMP-dependent protein kinase signaling pathways. , 2011, ACS chemical biology.

[314]  S. Balasubramanian,et al.  Photoactivation of Mutant Isocitrate Dehydrogenase 2 Reveals Rapid Cancer-Associated Metabolic and Epigenetic Changes , 2016, Journal of the American Chemical Society.

[315]  B. Feringa,et al.  Light-Controlled Histone Deacetylase (HDAC) Inhibitors: Towards Photopharmacological Chemotherapy. , 2015, Chemistry.

[316]  J. Eisen,et al.  Turning gene function ON and OFF using sense and antisense photo-morpholinos in zebrafish , 2012, Journal of Cell Science.

[317]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[318]  Andrew A. Beharry,et al.  Azobenzene photoswitching without ultraviolet light. , 2011, Journal of the American Chemical Society.

[319]  Gáspár Jékely,et al.  Site-Directed RNA Editing in Vivo Can Be Triggered by the Light-Driven Assembly of an Artificial Riboprotein , 2015, Journal of the American Chemical Society.

[320]  Alexander Deiters,et al.  Photocontrol of tyrosine phosphorylation in mammalian cells via genetic encoding of photocaged tyrosine. , 2012, Journal of the American Chemical Society.

[321]  Sachihiro Matsunaga,et al.  Chromophore-assisted laser inactivation – towards a spatiotemporal–functional analysis of proteins, and the ablation of chromatin, organelle and cell function , 2014, Journal of Cell Science.

[322]  Charles A. Gersbach,et al.  Light-Inducible Spatiotemporal Control of Gene Activation by Customizable Zinc Finger Transcription Factors , 2012, Journal of the American Chemical Society.

[323]  J. Ellenberg,et al.  Chromophore-assisted laser inactivation of alpha- and gamma-tubulin SNAP-tag fusion proteins inside living cells. , 2009, ACS chemical biology.

[324]  M. Allende,et al.  Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos. , 1996, Development.

[325]  J. Chin,et al.  Light-Activated Kinases Enable Temporal Dissection of Signaling Networks in Living Cells , 2011, Journal of the American Chemical Society.

[326]  B. Gong,et al.  Template-assisted cross olefin metathesis. , 2005, Angewandte Chemie.

[327]  James K. Chen,et al.  Synthetic strategies for studying embryonic development. , 2010, Chemistry & biology.

[328]  A. Deiters,et al.  Optochemical control of deoxyoligonucleotide function via a nucleobase-caging approach. , 2014, Accounts of chemical research.

[329]  H. Asanuma,et al.  Photoswitch nucleic acid catalytic activity by regulating topological structure with a universal supraphotoswitch. , 2013, ACS synthetic biology.

[330]  H. Lusic,et al.  Cellular delivery and photochemical activation of antisense agents through a nucleobase caging strategy. , 2013, ACS chemical biology.

[331]  A. Deiters,et al.  Optically Triggered Immune Response through Photocaged Oligonucleotides. , 2015, Tetrahedron letters.

[332]  Thomas M. Morse,et al.  Compartmentalization of GABAergic Inhibition by Dendritic Spines , 2013, Science.

[333]  A. Deiters,et al.  DNA computation: a photochemically controlled AND gate. , 2012, Journal of the American Chemical Society.

[334]  D. Lawrence,et al.  Cell-mediated assembly of phototherapeutics. , 2014, Angewandte Chemie.

[335]  T. Ohtsuki,et al.  Spatial regulation of specific gene expression through photoactivation of RNAi. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[336]  B. Erlanger,et al.  Photochromic activators of the acetylcholine receptor. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[337]  A. Deiters,et al.  Spatiotemporal control of microRNA function using light-activated antagomirs. , 2012, Molecular bioSystems.

[338]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[339]  C. Renner,et al.  Redox Potential of Azobenzene as an Amino Acid Residue in Peptides , 2007, Chembiochem : a European journal of chemical biology.

[340]  C. Kimmel,et al.  Promoting notochord fate and repressing muscle development in zebrafish axial mesoderm. , 1998, Development.

[341]  T. Ohtsuki,et al.  Photoinduced RNA interference. , 2012, Accounts of chemical research.