Comparative and Genetic Analyses of the Putative Vibrio cholerae Lipopolysaccharide Core Oligosaccharide Biosynthesis (wav) Gene Cluster

ABSTRACT We identified five different putative wav gene cluster types, which are responsible for the synthesis of the core oligosaccharide (OS) region of Vibrio cholerae lipopolysaccharide. Preliminary evidence that the genes encoded by this cluster are involved in core OS biosynthesis came from analysis of the recently released O1 El Tor V. cholerae genome sequence and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of O1 El Tor mutant strains defective in three genes (waaF, waaL, and wavB). Investigations of 38 different V. cholerae strains by Southern blotting, PCR, and sequencing analyses showed that the O1 El Tor wav gene cluster type is prevalent among clinical isolates of different serogroups associated with cholera and environmental O1 strains. In contrast, we found differences in the wav gene contents of 19 unrelated non-O1, non-O139 environmental and human isolates not associated with cholera. These strains contained four new wav gene cluster types that differ from each other in distinct gene loci, providing evidence for horizontal transfer of wav genes and for limited structural diversity of the core OS among V. cholerae isolates. Our results show genetic diversity in the core OS biosynthesis gene cluster and predominance of the type 1 wav gene locus in strains associated with clinical cholera, suggesting that a specific core OS structure could contribute to V. cholerae virulence.

[1]  K. Klose,et al.  Characterization of Vibrio cholerae O1 Antigen as the Bacteriophage K139 Receptor and Identification of IS1004Insertions Aborting O1 Antigen Biosynthesis , 2000, Journal of bacteriology.

[2]  A. C. Ghose,et al.  Rapid Method for Species-Specific Identification ofVibrio cholerae Using Primers Targeted to the Gene of Outer Membrane Protein OmpW , 2000, Journal of Clinical Microbiology.

[3]  P. Reeves,et al.  The sixth and seventh cholera pandemics are due to independent clones separately derived from environmental, nontoxigenic, non-O1 Vibrio cholerae , 1995, Journal of bacteriology.

[4]  K. Yuen,et al.  Detection of RTX Toxin Gene in Vibrio cholerae by PCR , 2001, Journal of Clinical Microbiology.

[5]  M. Albert,et al.  Characterization of Vibrio cholerae O139 Synonym Bengal Isolated from Patients with Cholera‐Like Disease in Bangladesh , 1993, Microbiology and immunology.

[6]  R. Clayton,et al.  Identification of a vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[7]  H. Namdari,et al.  A Cytotoxin-Producing Strain of Vibrio choleraeNon-O1, Non-O139 as a Cause of Cholera and Bacteremia after Consumption of Raw Clams , 2000, Journal of Clinical Microbiology.

[8]  J. Wells,et al.  Clinical and Environmental Isolates of Vibrio cholerae Serogroup O141 Carry the CTX Phage and the Genes Encoding the Toxin-Coregulated Pili , 2001, Journal of Clinical Microbiology.

[9]  J. Morris Non-O group 1 Vibrio cholerae: a look at the epidemiology of an occasional pathogen. , 1990, Epidemiologic reviews.

[10]  C Carrillo,et al.  The molecular epidemiology of cholera in Latin America. , 1993, The Journal of infectious diseases.

[11]  K. Roch,et al.  Seasonal distribution of facultatively enteropathogenic vibrios (Vibrio cholerae, Vibrio mimicus, Vibrio parahaemolyticus) in the freshwater of the Elbe River at Hamburg. , 1986, The Journal of applied bacteriology.

[12]  R. Morona,et al.  Molecular Basis for O-Antigen Biosynthesis in Vibrio cholerae O1: Ogawa-Inaba Switching , 1994 .

[13]  S. Maguire,et al.  A simple method for the preparation of plasmid and chromosomal E. coli DNA. , 1989, Nucleic acids research.

[14]  T. Shimada,et al.  [Distribution of serogroups of Vibrio cholerae non-O1 non-O139 with specific reference to their ability to produce cholera toxin, and addition of novel serogroups]. , 1997, Kansenshogaku zasshi. The Journal of the Japanese Association for Infectious Diseases.

[15]  J. Bockemühl,et al.  Ecology and epidemiology of Vibrio parahaemolyticus on the coast of Togo. , 1974, Bulletin of the World Health Organization.

[16]  Erik L. L. Sonnhammer,et al.  A Hidden Markov Model for Predicting Transmembrane Helices in Protein Sequences , 1998, ISMB.

[17]  P. Hitchcock,et al.  Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels , 1983, Journal of bacteriology.

[18]  W. V. Shaw,et al.  Purification and Characterization of Phosphopantetheine Adenylyltransferase from Escherichia coli * , 1999, The Journal of Biological Chemistry.

[19]  A. Cox,et al.  Structural analysis of the O-antigen-core region of the lipopolysaccharide from Vibrio cholerae O139. , 1996, Carbohydrate research.

[20]  C. Carpenter,et al.  An enterotoxin produced by noncholera vibrios. , 1972, The Johns Hopkins medical journal.

[21]  R. Colwell,et al.  The Vibrio cholerae O139 serogroup antigen includes an O-antigen capsule and lipopolysaccharide virulence determinants. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[22]  K. Klose,et al.  Characterization of Vibrio cholerae O1 El TorgalU and galE Mutants: Influence on Lipopolysaccharide Structure, Colonization, and Biofilm Formation , 2001, Infection and Immunity.

[23]  Ø. Olsvik,et al.  Vibrio cholerae and cholera : molecular to global perspectives , 1994 .

[24]  X. Huang,et al.  A contig assembly program based on sensitive detection of fragment overlaps. , 1992, Genomics.

[25]  Albert Balows,et al.  Manual of Clinical Microbiology, 7th ed. , 2000 .

[26]  E. Southern Detection of specific sequences among DNA fragments separated by gel electrophoresis. , 1975, Journal of molecular biology.

[27]  J. Mekalanos,et al.  A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR , 1988, Journal of bacteriology.

[28]  Yamamoto,et al.  Purification and some properties of a non-o1 Vibrio cholerae enterotoxin that is identical to cholera enterotoxin , 1983, Infection and immunity.

[29]  R. Morona,et al.  In Vibrio cholerae serogroup O1, rfaD is closely linked to the rfb operon. , 1995, Gene.

[30]  S. L. Chiang,et al.  CTX genetic element encodes a site-specific recombination system and an intestinal colonization factor. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[31]  F. Mooi,et al.  DNA fingerprinting of Vibrio cholerae strains with a novel insertion sequence element: a tool to identify epidemic strains , 1996, Journal of clinical microbiology.

[32]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Rita R. Colwell,et al.  Genotypes Associated with Virulence in Environmental Isolates of Vibrio cholerae , 2001, Applied and Environmental Microbiology.

[34]  O. Holst,et al.  Isolation and structural analysis of oligosaccharide phosphates containing the complete carbohydrate chain of the lipopolysaccharide from Vibrio cholerae strain H11 (non-O1). , 1994, European journal of biochemistry.

[35]  P. Reeves,et al.  Molecular evolution of the seventh-pandemic clone of Vibrio cholerae and its relationship to other pandemic and epidemic V. cholerae isolates , 1994, Journal of bacteriology.

[36]  D. Maskell,et al.  Bacterial polysaccharide synthesis and gene nomenclature. , 1996, Trends in microbiology.

[37]  P. H. Makela Enterobacterial Common Antigen , 2022 .

[38]  W R Pearson,et al.  Comparison of DNA sequences with protein sequences. , 1997, Genomics.

[39]  R. E. Rose,et al.  The nucleotide sequence of pACYC177 , 1988, Nucleic Acids Res..

[40]  E. Boedeker,et al.  A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. Brisson,et al.  Structural analysis of the lipopolysaccharide from Vibrio cholerae O139. , 1996, Carbohydrate Research.

[42]  S. Faruque,et al.  Epidemiology, Genetics, and Ecology of ToxigenicVibrio cholerae , 1998, Microbiology and Molecular Biology Reviews.

[43]  S. Yamasaki,et al.  Molecular Analysis of Non-O1, Non-O139 Vibrio choleraeAssociated with an Unusual Upsurge in the Incidence of Cholera-Like Disease in Calcutta, India , 1998, Journal of Clinical Microbiology.

[44]  Henry D. Isenberg,et al.  Manual of Clinical Microbiology , 1991 .

[45]  S. Salzberg,et al.  DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae , 2000, Nature.

[46]  A. Weintraub,et al.  Structure of the capsular polysaccharide of Vibrio cholerae O139 synonym Bengal containing D-galactose 4,6-cyclophosphate. , 1995, European journal of biochemistry.

[47]  C. Hoge,et al.  Epidemic of diarrhea caused by Vibrio cholerae non-O1 that produced heat-stable toxin among Khmers in a camp in Thailand , 1993, Journal of clinical microbiology.

[48]  D. Belin,et al.  Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter , 1995, Journal of bacteriology.

[49]  N. T. Blackburn,et al.  Pathways for the O-Acetylation of Bacterial Cell Wall Polysaccharides , 2002 .

[50]  Y. Takeda,et al.  Characterization of VPI Pathogenicity Island and CTXφ Prophage in Environmental Strains of Vibrio cholerae , 2001, Journal of bacteriology.

[51]  E. Aldová,et al.  Isolation of nonagglutinable vibrios from an enteritis outbreak in Czechoslovakia. , 1968, The Journal of infectious diseases.

[52]  H. Brade,et al.  Endotoxin in Health and Disease , 2020 .

[53]  C. Whitfield,et al.  Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica , 1998, Molecular microbiology.

[54]  A. Weintraub,et al.  Structural studies on the short-chain lipopolysaccharide of Vibrio cholerae O139 Bengal. , 1997, European journal of biochemistry.

[55]  Rita R. Colwell Global Climate and Infectious Disease: The Cholera Paradigm* , 1996, Science.

[56]  Eduardo N. Taboada,et al.  The Genetic Bases for the Variation in the Lipo-oligosaccharide of the Mucosal Pathogen, Campylobacter jejuni , 2002, The Journal of Biological Chemistry.

[57]  O. Holst,et al.  The structure of the lipid A-core region of the lipopolysaccharides from Vibrio cholerae O1 smooth strain 569B (Inaba) and rough mutant strain 95R (Ogawa). , 1995, European journal of biochemistry.

[58]  W. Wakarchuk,et al.  Functional genomics of Helicobacter pylori: identification of a β‐1,4 galactosyltransferase and generation of mutants with altered lipopolysaccharide , 2000, Molecular microbiology.

[59]  L. Enquist,et al.  Experiments With Gene Fusions , 1984 .

[60]  M. Waldor,et al.  ToxR regulates virulence gene expression in non-O1 strains of Vibrio cholerae that cause epidemic cholera , 1994, Infection and Immunity.

[61]  C. Frasch,et al.  A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. , 1982, Analytical biochemistry.

[62]  T. Shimada,et al.  A high proportion of Vibrio cholerae strains isolated from children with diarrhoea in Bangkok, Thailand are multiple antibiotic resistant and belong to heterogenous non-O1, non-O139 O-serotypes , 1999, Epidemiology and Infection.

[63]  Paul F. Lehmann,et al.  P.R. Murray, E.J. Baron, M.A. Pfaller, F.C. Tenover and R.H. Yolken, eds. Manual of Clinical Microbiology, 7th ed. , 1999, Mycopathologia.

[64]  J. Mekalanos Duplication and amplification of toxin genes in Vibrio cholerae , 1983, Cell.

[65]  H. Bujard,et al.  Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. , 1997, Nucleic acids research.

[66]  B. Gibson,et al.  Construction and Characterization of Haemophilus ducreyi Lipooligosaccharide (LOS) Mutants Defective in Expression of Heptosyltransferase III and β1,4-Glucosyltransferase: Identification of LOS Glycoforms Containing Lactosamine Repeats , 2000, Infection and Immunity.

[67]  S. Attridge,et al.  Isolation and characterization of bacteriophage-resistant mutants of Vibrio cholerae O139. , 2001, Microbial pathogenesis.

[68]  M. Waldor,et al.  Infectious CTXΦ and the Vibrio Pathogenicity Island Prophage in Vibrio mimicus: Evidence for Recent Horizontal Transfer between V. mimicus and V. cholerae , 2000, Infection and Immunity.

[69]  J. Brisson,et al.  Structural analysis of the lipopolysaccharide from Vibrio cholerae serotype O22. , 1997, Carbohydrate research.

[70]  M. Waldor,et al.  Replication and integration of a Vibrio cholerae cryptic plasmid linked to the CTX prophage , 1998, Molecular microbiology.

[71]  C. Whitfield,et al.  Distribution of Core Oligosaccharide Types in Lipopolysaccharides from Escherichia coli , 2000, Infection and Immunity.

[72]  Albert,et al.  Flies as a source of enteric pathogens in a rural village in Thailand , 1983, Applied and environmental microbiology.

[73]  A. C. Ghose,et al.  Molecular Characterization of a New Variant of Toxin-Coregulated Pilus Protein (TcpA) in a Toxigenic Non-O1/Non-O139 Strain ofVibrio cholerae , 2000, Infection and Immunity.

[74]  Shiro Yamai,et al.  Vibrio cholerae non-O1 non-O139の血清型分布, その毒素産生性および新血清型の追加について , 1997 .

[75]  Kay Hofmann,et al.  Tmbase-A database of membrane spanning protein segments , 1993 .

[76]  P. Manning,et al.  Genetic organization of the regions associated with surface polysaccharide synthesis in Vibrio cholerae O1, O139 and Vibrio anguillarum O1 and O2: a review. , 1998, Gene.