Object tracking based on an online learning network with total error rate minimization

Abstract This paper presents a visual object tracking system which is tolerant to external imaging factors such as illumination, scale, rotation, occlusion and background changes. Specifically, an integration of an online version of total-error-rate minimization based projection network with an observation model of particle filter is proposed to effectively distinguish between the target object and the background. A re-weighting technique is proposed to stabilize the sampling of particle filter for stochastic propagation. For self-adaptation, an automatic updating scheme and extraction of training samples are proposed to adjust to system changes online. Our qualitative and quantitative experiments on 16 public video sequences show convincing performances in terms of tracking accuracy and computational efficiency over competing state-of-the-art algorithms.

[1]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[2]  Luc Van Gool,et al.  Beyond semi-supervised tracking: Tracking should be as simple as detection, but not simpler than recognition , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[3]  François Brémond,et al.  Online learning neural tracker , 2011, Neurocomputing.

[4]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[5]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[6]  Jean-Marc Odobez,et al.  Evaluating Multi-Object Tracking , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[7]  Jerry L. Prince,et al.  Snakes, shapes, and gradient vector flow , 1998, IEEE Trans. Image Process..

[8]  Koby Crammer,et al.  Online Classification on a Budget , 2003, NIPS.

[9]  Kar-Ann Toh,et al.  Deterministic Neural Classification , 2008, Neural Computation.

[10]  Arun Ross,et al.  Score normalization in multimodal biometric systems , 2005, Pattern Recognit..

[11]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Kar-Ann Toh,et al.  Between Classification-Error Approximation and Weighted Least-Squares Learning , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Chee Kheong Siew,et al.  Extreme learning machine: Theory and applications , 2006, Neurocomputing.

[14]  Z. M. Hefed Object tracking , 1999 .

[15]  Qing Wang,et al.  Online discriminative object tracking with local sparse representation , 2012, 2012 IEEE Workshop on the Applications of Computer Vision (WACV).

[16]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[17]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[18]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[19]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Ishwar K. Sethi,et al.  Finding Trajectories of Feature Points in a Monocular Image Sequence , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Se-Young Oh,et al.  Robust segment-based object tracking using generalized hyperplane approximation , 2012, Pattern Recognit..

[22]  Rama Chellappa,et al.  Estimation of Object Motion Parameters from Noisy Images , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[24]  Andrew Beng Jin Teoh,et al.  An online learning network for biometric scores fusion , 2013, Neurocomputing.

[25]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[26]  Chee Kheong Siew,et al.  Universal Approximation using Incremental Constructive Feedforward Networks with Random Hidden Nodes , 2006, IEEE Transactions on Neural Networks.

[27]  Ishwar K. Sethi,et al.  Feature Point Correspondence in the Presence of Occlusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[29]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[30]  Jaihie Kim,et al.  Biometric scores fusion based on total error rate minimization , 2008, Pattern Recognit..

[31]  David J. Kriegman,et al.  Online learning of probabilistic appearance manifolds for video-based recognition and tracking , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[32]  Baochang Zhang,et al.  Visual object tracking via sample-based Adaptive Sparse Representation (AdaSR) , 2011, Pattern Recognit..

[33]  David Beymer,et al.  Real-Time Tracking of Multiple People Using Continuous Detection , 1999 .

[34]  Guijin Wang,et al.  An incremental Bhattacharyya dissimilarity measure for particle filtering , 2010, Pattern Recognit..

[35]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Gregory D. Hager,et al.  Efficient Region Tracking With Parametric Models of Geometry and Illumination , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[39]  A. Yezzi,et al.  On the relationship between parametric and geometric active contours , 2000, Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154).

[40]  ShaoLing,et al.  Recent advances and trends in visual tracking , 2011 .

[41]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Kaihua Zhang,et al.  Real-time visual tracking via online weighted multiple instance learning , 2013, Pattern Recognit..

[43]  Haibin Ling,et al.  Robust Visual Tracking and Vehicle Classification via Sparse Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Youfu Li,et al.  Robust visual tracking with structured sparse representation appearance model , 2012, Pattern Recognit..

[45]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[46]  Kazuhiro Hotta Adaptive weighting of local classifiers by particle filters for robust tracking , 2009, Pattern Recognit..

[47]  Kevin Cannons,et al.  A Review of Visual Tracking , 2008 .

[48]  Gérard G. Medioni,et al.  Context tracker: Exploring supporters and distracters in unconstrained environments , 2011, CVPR 2011.

[49]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[51]  Mubarak Shah,et al.  Establishing motion correspondence , 1991, CVGIP Image Underst..

[52]  Yuan Yang,et al.  Graph-based transductive learning for robust visual tracking , 2010, Pattern Recognit..

[53]  Ling Shao,et al.  Recent advances and trends in visual tracking: A review , 2011, Neurocomputing.

[54]  Minyoung Kim,et al.  Correlation-based incremental visual tracking , 2012, Pattern Recognit..

[55]  Yanxi Liu,et al.  Online selection of discriminative tracking features , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Paul A. Viola,et al.  Multiple Instance Boosting for Object Detection , 2005, NIPS.

[57]  김용수,et al.  Extreme Learning Machine 기반 퍼지 패턴 분류기 설계 , 2015 .

[58]  Björn Stenger,et al.  Tracking Using Online Feature Selection and a Local Generative Model , 2007, BMVC.

[59]  Huchuan Lu,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON IMAGE PROCESSING 1 Online Object Tracking with Sparse Prototypes , 2022 .

[60]  Shai Avidan,et al.  Support vector tracking , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[61]  Kar-Ann Toh A projection framework for biometrie scores fusion , 2010, 2010 11th International Conference on Control Automation Robotics & Vision.