Velocity-based adaptivity of deformable models

A new adaptive model for viscoelastic solids is presented. Unlike previous approaches, it allows seamless transitions, and simplifications in deformed states. The deformation field is generated by a set of physically animated frames. Starting from a fine set of frames and mechanical energy integration points, the model can be coarsened by attaching frames to others, and merging integration points. Since frames can be attached in arbitrary relative positions, simplifications can occur seamlessly in deformed states, without returning to the original shape, which can be recovered later after refinement. We propose a new class of velocity-based simplification criterion based on relative velocities. Integration points can be merged to reduce the computation time even more, and we show how to maintain continuous elastic forces through the levels of detail. Such meshless adaptivity allows significant improvements of computation time during simulations. It also provides a natural approach to coarse-to-fine deformable mesh registration. Graphical abstractDisplay Omitted HighlightsAdaptive kinematics for deformable objects are proposed.The model can simplify/refine in any configuration.Several metrics can drive the process (perceptual, physics-based).Adaptivity of elastic energy integration is also developed.Experimental results are presented, including an application to deformable mesh registration.

[1]  Matthias Teschner,et al.  An Adaptive Contact Model for the Robust Simulation of Knots , 2008, Comput. Graph. Forum.

[2]  Sami Romdhani,et al.  Optimal Step Nonrigid ICP Algorithms for Surface Registration , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Dinesh K. Pai,et al.  Frame-based elastic models , 2011, TOGS.

[4]  Zoran Popovic,et al.  The space of human body shapes: reconstruction and parameterization from range scans , 2003, ACM Trans. Graph..

[5]  Nancy S. Pollard,et al.  Fast simulation of skeleton-driven deformable body characters , 2011, TOGS.

[6]  Terry Hewitt,et al.  Adaptive refinement for mass/spring simulations , 1996 .

[7]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[10]  Markus H. Gross,et al.  Fast adaptive shape matching deformations , 2008, SCA '08.

[11]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[12]  James F. O'Brien,et al.  Adaptive anisotropic remeshing for cloth simulation , 2012, ACM Trans. Graph..

[13]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[14]  Hamid R. Noori on "Dynamic local remeshing for elastoplastic simulation" , 2011 .

[15]  Greg Turk,et al.  A finite element method for animating large viscoplastic flow , 2007, SIGGRAPH 2007.

[16]  Daniel Thalmann,et al.  Joint-dependent local deformations for hand animation and object grasping , 1989 .

[17]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[18]  Eitan Grinspun,et al.  Unified simulation of elastic rods, shells, and solids , 2010, ACM Trans. Graph..

[19]  D. Pai,et al.  Sparse meshless models of complex deformable solids , 2011, ACM Trans. Graph..

[20]  François Faure,et al.  Seamless adaptivity of elastic models , 2014, Graphics Interface.

[21]  G. Turk,et al.  Fast viscoelastic behavior with thin features , 2008, SIGGRAPH 2008.

[22]  Dinesh K. Pai,et al.  Author manuscript, published in "ACM Transactions on Graphics (2011)" Sparse Meshless Models of Complex Deformable Solids , 2011 .

[23]  Jernej Barbic,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, ACM Trans. Graph..

[24]  Markus H. Gross,et al.  Polyhedral Finite Elements Using Harmonic Basis Functions , 2008, Comput. Graph. Forum.

[25]  Doug L. James,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, SIGGRAPH 2005.

[26]  Frank Tendick,et al.  Adaptive Nonlinear Finite Elements for Deformable Body Simulation Using Dynamic Progressive Meshes , 2001, Comput. Graph. Forum.

[27]  James F. O'Brien,et al.  Dynamic local remeshing for elastoplastic simulation , 2010, SIGGRAPH 2010.

[28]  Markus H. Gross,et al.  Rig-space physics , 2012, ACM Trans. Graph..

[29]  Stephane Cotin,et al.  A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation , 2000, The Visual Computer.

[30]  M. Gross,et al.  Unified simulation of elastic rods, shells, and solids , 2010, SIGGRAPH 2010.

[31]  Martin Servin,et al.  Hybrid, Multiresolution Wires with Massless Frictional Contacts , 2011, IEEE Transactions on Visualization and Computer Graphics.

[32]  Mathieu Desbrun,et al.  Dynamic real-time deformations using space & time adaptive sampling , 2001, SIGGRAPH.

[33]  Jernej Barbic,et al.  Real-time large-deformation substructuring , 2011, ACM Trans. Graph..

[34]  Hao Li,et al.  Global Correspondence Optimization for Non‐Rigid Registration of Depth Scans , 2008, Comput. Graph. Forum.

[35]  Andrew Nealen,et al.  Physically Based Deformable Models in Computer Graphics , 2006, Comput. Graph. Forum.

[36]  Lionel Revéret,et al.  Creating and Animating Subject‐Specific Anatomical Models , 2010, Comput. Graph. Forum.

[37]  Laurent Grisoni,et al.  Adaptive resolution of 1D mechanical B-spline , 2005, GRAPHITE '05.

[38]  Paolo Cignoni,et al.  Introducing Multiresolution Representation in Deformable Object Modeling , 1999 .

[39]  Eitan Grinspun,et al.  CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..

[40]  N. Chentanez,et al.  Solid simulation with oriented particles , 2011, SIGGRAPH 2011.

[41]  Ronald Fedkiw,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Hybrid Simulation of Deformable Solids , 2022 .

[42]  Theodore Kim,et al.  Skipping steps in deformable simulation with online model reduction , 2009, SIGGRAPH 2009.

[43]  Jirí Zára,et al.  Skinning with dual quaternions , 2007, SI3D.

[44]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[45]  Theodore Kim,et al.  Skipping steps in deformable simulation with online model reduction , 2009, ACM Trans. Graph..

[46]  Christoph von Tycowicz,et al.  Interactive spacetime control of deformable objects , 2012, ACM Trans. Graph..

[47]  Dinesh K. Pai,et al.  EigenSkin: real time large deformation character skinning in hardware , 2002, SCA '02.