Generically stable and smooth measures in NIP theories

We formulate the measure analogue of generically stable types in first order theories with NIP (without the independence property), giving several characterizations, answering some questions from [9], and giving another treatment of uniqueness results from [9]. We introduce a notion of “generic compact domination”, relating it to stationarity of Keisler measures, and also giving group versions. We also prove the “approximate definability” of arbitrary Borel probability measures on definable sets in the real and p-adic fields.

[1]  Saharon Shelah Dependent first order theories, continued , 2004 .

[2]  Charles Steinhorn,et al.  Definable Types in O-Minimal Theories , 1994, J. Symb. Log..

[3]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[4]  H. Jerome Keisler,et al.  RANDOMIZATIONS OF MODELS AS METRIC STRUCTURES , 2009 .

[5]  Boris Zilber,et al.  Stable domination and independence in algebraically closed valued fields (Lecture Notes in Logic 30) , 2010 .

[6]  Victor Harnik,et al.  Review: S. Shelah, Classification Theory and the Number of Nonisomorphic Models , 1982, Journal of Symbolic Logic.

[7]  Deirdre Haskell,et al.  Stable Domination and Independence in Algebraically Closed Valued Fields , 2005, math/0511310.

[8]  Hans Adler,et al.  Introduction to theories without the independence property , 2008 .

[9]  H. Keisler Choosing elements in a saturated model , 1987 .

[10]  Alexander Usvyatsov On generically stable types in dependent theories , 2009, J. Symb. Log..

[11]  Itai Ben Yaacov Continuous and random Vapnik-Chervonenkis classes , 2008 .

[12]  A. Pillay Geometric Stability Theory , 1996 .

[13]  B. Poizat A Course in Model Theory , 2000 .

[14]  M. Karpinski,et al.  Approximating Volumes and Integrals in o-Minimal and p-Minimal Theories , 1997 .

[15]  Francoise Delon Definissabilite Avec Parametres Exterieurs Dans Q p Et R , 1989 .

[16]  Randolph B. Tarrier,et al.  Groups , 1973, Algebra.

[17]  Ehud Hrushovski,et al.  On NIP and invariant measures , 2007, 0710.2330.

[18]  Alf Onshuus,et al.  Definable groups and compact p-adic Lie groups , 2008 .

[19]  Angus D. Macintyre Connections between model theory and algebraic and analytic geometry , 2000 .

[20]  Françoise Delon Définissabilité avec paramètres extérieurs dans _{} et , 1989 .

[21]  Anand Pillay,et al.  Hyperimaginaries and automorphism groups , 2001, Journal of Symbolic Logic.

[22]  Ya'acov Peterzil,et al.  Groups, measures, and the NIP , 2006 .

[23]  Anand Pillay,et al.  Coordinatisation and canonical bases in simple theories , 2000, Journal of Symbolic Logic.

[24]  H. Jerome Keisler Measures and forking , 1987, Ann. Pure Appl. Log..