Gene regulation in the intraerythrocytic cycle of Plasmodium falciparum

MOTIVATION To date, there is little knowledge about one of the processes fundamental to the biology of Plasmodium falciparum, gene regulation including transcriptional control. We use noisy threshold models to identify regulatory sequence elements explaining membership to a gene expression cluster where each cluster consists of genes active during the part of the developmental cycle inside a red blood cell. Our approach is both able to capture the combinatorial nature of gene regulation and to incorporate uncertainty about the functionality of putative regulatory sequence elements. RESULTS We find a characteristic pattern where the most common motifs tend to be absent upstream of genes active in the first half of the cycle and present upstream of genes active in the second half. We find no evidence that motif's score, orientation, location and multiplicity improves prediction of gene expression. Through comparative genome analysis, we find a list of potential transcription factors and their associated motifs. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

[1]  Todd M. Gierahn,et al.  Regulatory motifs uncovered among gene expression clusters in Plasmodium falciparum. , 2007, Molecular and biochemical parasitology.

[2]  M Lanzer,et al.  A sequence element associated with the Plasmodium falciparum KAHRP gene is the site of developmentally regulated protein-DNA interactions. , 1992, Nucleic acids research.

[3]  Ting Wang,et al.  An improved map of conserved regulatory sites for Saccharomyces cerevisiae , 2006, BMC Bioinformatics.

[4]  S. Dolnicar,et al.  An examination of indexes for determining the number of clusters in binary data sets , 2002, Psychometrika.

[5]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[6]  Wyeth W. Wasserman,et al.  JASPAR: an open-access database for eukaryotic transcription factor binding profiles , 2004, Nucleic Acids Res..

[7]  Félix Recillas-Targa,et al.  Recombinant and native Plasmodium falciparum TATA-binding-protein binds to a specific TATA box element in promoter regions. , 2005, Molecular and biochemical parasitology.

[8]  Li Li,et al.  PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data , 2003, Nucleic Acids Res..

[9]  Serge Bonnefoy,et al.  A 24 bp cis-acting element essential for the transcriptional activity of Plasmodium falciparum CDP-diacylglycerol synthase gene promoter. , 2002, Molecular and biochemical parasitology.

[10]  Yoshihiro Ugawa,et al.  Plant cis-acting regulatory DNA elements (PLACE) database: 1999 , 1999, Nucleic Acids Res..

[11]  David L. Tabb,et al.  A proteomic view of the Plasmodium falciparum life cycle , 2002, Nature.

[12]  Russ B. Altman,et al.  Missing value estimation methods for DNA microarrays , 2001, Bioinform..

[13]  H. Bussemaker,et al.  Regulatory element detection using correlation with expression , 2001, Nature Genetics.

[14]  T. Werner Models for prediction and recognition of eukaryotic promoters , 1999, Mammalian Genome.

[15]  G. Church,et al.  Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. , 2000, Journal of molecular biology.

[16]  Manuel Llinás,et al.  Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains , 2006, Nucleic acids research.

[17]  L. Hubert,et al.  A general statistical framework for assessing categorical clustering in free recall. , 1976 .

[18]  Michael A. Beer,et al.  Predicting Gene Expression from Sequence , 2004, Cell.

[19]  M Lanzer,et al.  Mutational analysis identifies a five base pair cis-acting sequence essential for GBP130 promoter activity in Plasmodium falciparum. , 1999, Molecular and biochemical parasitology.

[20]  Inna Dubchak,et al.  RegTransBase—a database of regulatory sequences and interactions in a wide range of prokaryotic genomes , 2006, Nucleic Acids Res..

[21]  N. Slonim,et al.  A universal framework for regulatory element discovery across all genomes and data types. , 2007, Molecular cell.

[22]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[23]  J. Derisi,et al.  The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum , 2003, PLoS biology.

[24]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[25]  Andrew R. Gehrke,et al.  Specific DNA-binding by Apicomplexan AP2 transcription factors , 2008, Proceedings of the National Academy of Sciences.

[26]  M. Huynen,et al.  Combinatorial gene regulation in Plasmodium falciparum. , 2006, Trends in genetics : TIG.

[27]  Koen J. Dechering,et al.  Isolation and Functional Characterization of Two Distinct Sexual-Stage-Specific Promoters of the Human Malaria Parasite Plasmodium falciparum , 1999, Molecular and Cellular Biology.

[28]  L. McRobert,et al.  Evidence on the chromosomal location of centromeric DNA in Plasmodium falciparum from etoposide-mediated topoisomerase-II cleavage. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[29]  G. Church,et al.  A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. , 1998, Journal of molecular biology.

[30]  Steven Salzberg,et al.  On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach , 1997, Data Mining and Knowledge Discovery.

[31]  Tom Heskes,et al.  Learning symmetric causal independence models , 2008, Machine Learning.

[32]  Joseph L DeRisi,et al.  Whole-genome analysis of mRNA decay in Plasmodium falciparum reveals a global lengthening of mRNA half-life during the intra-erythrocytic development cycle , 2007, Genome Biology.

[33]  Michael B. Eisen,et al.  Identification of regulatory elements using a feature selection method , 2002, Bioinform..

[34]  Gary D. Stormo,et al.  Identifying target sites for cooperatively binding factors , 2001, Bioinform..

[35]  Christian J. Stoeckert,et al.  Computational Analysis of Constraints on Noncoding Regions, Coding Regions and Gene Expression in Relation to Plasmodium Phenotypic Diversity , 2008, PloS one.

[36]  Andrew P. Sage,et al.  Uncertainty in Artificial Intelligence , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[37]  Yingyao Zhou,et al.  In silico discovery of transcription regulatory elements in Plasmodium falciparum , 2008, BMC Genomics.

[38]  D. Wirth,et al.  Identification of regulatory elements in the Plasmodium falciparum genome. , 2004, Molecular and biochemical parasitology.

[39]  Martin Schindler,et al.  AthaMap: an online resource for in silico transcription factor binding sites in the Arabidopsis thaliana genome , 2004, Nucleic Acids Res..

[40]  Bindu Gajria,et al.  PlasmoDB: The Plasmodium Genome Resource , 2005 .

[41]  Alexander E. Kel,et al.  TRANSFAC® and its module TRANSCompel®: transcriptional gene regulation in eukaryotes , 2005, Nucleic Acids Res..

[42]  Panayiotis V. Benos,et al.  STAMP: a web tool for exploring DNA-binding motif similarities , 2007, Nucleic Acids Res..

[43]  Casey M. Bergman,et al.  Drosophila DNase I footprint database: a systematic genome annotation of transcription factor binding sites in the fruitfly, Drosophila melanogaster , 2005, Bioinform..

[44]  D. Wirth,et al.  Linker scanning mutagenesis of the Plasmodium gallinaceum sexual stage specific gene pgs28 reveals a novel downstream cis-control element. , 2003, Molecular and biochemical parasitology.

[45]  Max Henrion,et al.  Some Practical Issues in Constructing Belief Networks , 1987, UAI.

[46]  H. Ginsburg,et al.  Intraerythrocytic Plasmodium falciparum utilizes only a fraction of the amino acids derived from the digestion of host cell cytosol for the biosynthesis of its proteins. , 2002, Molecular and biochemical parasitology.

[47]  Karine Prat,et al.  Prediction of the general transcription factors associated with RNA polymerase II in Plasmodium falciparum: conserved features and differences relative to other eukaryotes , 2005, BMC Genomics.

[48]  Lei Guo,et al.  Predicting Gene Expression from Sequence: A Reexamination , 2007, PLoS Comput. Biol..

[49]  G. Church,et al.  Identifying regulatory networks by combinatorial analysis of promoter elements , 2001, Nature Genetics.

[50]  Jie Wu,et al.  Discovering regulatory motifs in the Plasmodium genome using comparative genomics , 2008, Bioinform..

[51]  K. Lindblad-Toh,et al.  Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals , 2005, Nature.

[52]  Hideo Imamura,et al.  Sequences conserved by selection across mouse and human malaria species , 2007, BMC Genomics.

[53]  Files for Figures,et al.  Genes Regulated Cooperatively By One or More Transcription Factors and Their Identification in Whole Eukaryotic Genomes , 1998 .

[54]  J. Breman,et al.  The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. , 2001, The American journal of tropical medicine and hygiene.

[55]  T. Wellems,et al.  Plasmodium falciparum var Genes Are Regulated by Two Regions with Separate Promoters, One Upstream of the Coding Region and a Second within the Intron* , 2003, Journal of Biological Chemistry.