Skew constacyclic codes over a non-chain ring Fq[u,v]/⟨f(u),g(v),uv-vu⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$

Let $f(u)$ and $g(v)$ be two polynomials of degree $k$ and $\ell$ respectively, not both linear, which split into distinct linear factors over $\mathbb{F}_{q}$. Let $\mathcal{R}=\mathbb{F}_{q}[u,v]/\langle f(u),g(v),\\uv-vu\rangle$ be a finite commutative non-chain ring. In this paper, we study $\psi$-skew cyclic and $\theta_t$-skew constacyclic codes over the ring $\mathcal{R}$ where $\psi$ and $\theta_t$ are two automorphisms defined on $\mathcal{R}$.

[1]  Felix Ulmer,et al.  Coding with skew polynomial rings , 2009, J. Symb. Comput..

[2]  Habibul Islam,et al.  Construction of skew cyclic and skew constacyclic codes over Fq+uFq+vFq , 2017, ArXiv.

[3]  Minjia Shi,et al.  Skew Cyclic Codes over $\mathbb{F}_{q}+v\mathbb{F}_{q}+v^{2}\mathbb{F}_{q}$ , 2015 .

[4]  Mokshi Goyal,et al.  Duadic and triadic codes over a finite non-chain ring and their Gray images , 2018, Int. J. Inf. Coding Theory.

[5]  Habibul Islam,et al.  Skew cyclic and skew (α1 + uα2 + vα3 + uvα4)-constacyclic codes over Fq + uFq + vFq + uvFq , 2018, Int. J. Inf. Coding Theory.

[6]  Felix Ulmer,et al.  Skew-cyclic codes , 2006, Applicable Algebra in Engineering, Communication and Computing.

[7]  Patrick Solé,et al.  Skew Cyclic Codes over a Non-chain Ring , 2017 .

[8]  T. Aaron Gulliver,et al.  Some constacyclic codes over finite chain rings , 2012, Adv. Math. Commun..

[9]  Mokshi Goyal,et al.  Polyadic constacyclic codes over a non-chain ring $$\mathbb {F}_{q}[u,v]/\langle f(u),g(v), uv-vu\rangle $$ , 2019, J. Appl. Math. Comput..

[10]  Mokshi Goyal,et al.  (1−2u3)-constacyclic codes and quadratic residue codes over Fp[u]/〈u4−u〉$\mathbb {F}_{p}[u]/\langle u^{4}-u\rangle $ , 2017, Cryptography and Communications.

[11]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[13]  Habibul Islam,et al.  Skew cyclic codes and skew(1+u2+v3+uv4)-constacyclic codes over Fq + uFq + vFq + uvFq , 2017, ArXiv.

[14]  B. R. McDonald Finite Rings With Identity , 1974 .

[15]  Taher Abualrub,et al.  Skew cyclic codes of arbitrary length , 2011, Int. J. Inf. Coding Theory.

[17]  Patanee Udomkavanich,et al.  Skew constacyclic codes over finite chain rings , 2010, Adv. Math. Commun..

[18]  Mokshi Goyal,et al.  Duadic negacyclic codes over a finite non-chain ring and their Gray images , 2018, Discret. Math. Algorithms Appl..