The Marginal Enumeration Bayesian Cramér–Rao Bound for Jump Markov Systems

A marginal version of the enumeration Bayesian Cramér-Rao Bound (EBCRB) for jump Markov systems is proposed. It is shown that the proposed bound is at least as tight as EBCRB and the improvement stems from better handling of the nonlinearities. The new bound is illustrated to yield tighter results than BCRB and EBCRB on a benchmark example.

[1]  Lennart Svensson,et al.  On the Bayesian Cramér-Rao Bound for Markovian Switching Systems , 2010, IEEE Transactions on Signal Processing.

[2]  Y. Bar-Shalom,et al.  The interacting multiple model algorithm for systems with Markovian switching coefficients , 1988 .

[3]  Fredrik Gustafsson,et al.  Bounds on the Optimal Performance for Jump Markov Linear Gaussian Systems , 2013, IEEE Transactions on Signal Processing.

[4]  Petr Tichavský,et al.  Filtering, predictive, and smoothing Cramér-Rao bounds for discrete-time nonlinear dynamic systems , 2001, Autom..

[5]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[6]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[7]  Michael J. Dueker,et al.  Non-Markovian Regime Switching with Endogenous States and Time-Varying State Strengths , 2004 .

[8]  Fredrik Gustafsson,et al.  Adaptive filtering and change detection , 2000 .

[9]  Christophe Andrieu,et al.  Efficient particle filtering for jump Markov systems. Application to time-varying autoregressions , 2003, IEEE Trans. Signal Process..

[10]  George W. Irwin,et al.  Multiple model bootstrap filter for maneuvering target tracking , 2000, IEEE Trans. Aerosp. Electron. Syst..

[11]  Vikram Krishnamurthy,et al.  Expectation maximization algorithms for MAP estimation of jump Markov linear systems , 1999, IEEE Trans. Signal Process..

[12]  A. Farina,et al.  Error performance bounds for tracking a manoeuvring target , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[13]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[14]  K. Fu,et al.  On state estimation in switching environments , 1968 .

[15]  Jitendra Tugnait,et al.  Adaptive estimation and identification for discrete systems with Markov jump parameters , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[16]  H. V. Trees,et al.  Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking , 2007 .

[17]  A. Farina,et al.  International Conference on Information Fusion ( FUSION ) A Performance Bound for Manoeuvring Target Tracking Using Best-Fitting Gaussian Distrbutions , 2006 .

[18]  Y. Boers,et al.  Efficient particle filter for jump Markov nonlinear systems , 2005 .

[19]  J. Mendel,et al.  Maximum-Likelihood Deconvolution: A Journey into Model-Based Signal Processing , 1990 .

[20]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[21]  R. P. Marques,et al.  Discrete-Time Markov Jump Linear Systems , 2004, IEEE Transactions on Automatic Control.

[22]  A. Farina,et al.  Performance measure for Markovian switching systems using best-fitting Gaussian distributions , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[23]  Pramod K. Varshney,et al.  Conditional Posterior Cramér–Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation , 2012, IEEE Transactions on Signal Processing.

[24]  G. A. Ackerson,et al.  On state estimation in switching environments , 1968 .

[25]  M. Zakai,et al.  Some Classes of Global Cramer-Rao Bounds , 1987 .

[26]  Carlos H. Muravchik,et al.  Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..

[27]  Pramod K. Varshney,et al.  Conditional Posterior Cramér-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation , 2011, IEEE Trans. Signal Process..