The Marginal Enumeration Bayesian Cramér–Rao Bound for Jump Markov Systems
暂无分享,去创建一个
Fredrik Gustafsson | Umut Orguner | Lennart Svensson | Carsten Fritsche | F. Gustafsson | U. Orguner | L. Svensson | C. Fritsche
[1] Lennart Svensson,et al. On the Bayesian Cramér-Rao Bound for Markovian Switching Systems , 2010, IEEE Transactions on Signal Processing.
[2] Y. Bar-Shalom,et al. The interacting multiple model algorithm for systems with Markovian switching coefficients , 1988 .
[3] Fredrik Gustafsson,et al. Bounds on the Optimal Performance for Jump Markov Linear Gaussian Systems , 2013, IEEE Transactions on Signal Processing.
[4] Petr Tichavský,et al. Filtering, predictive, and smoothing Cramér-Rao bounds for discrete-time nonlinear dynamic systems , 2001, Autom..
[5] Branko Ristic,et al. Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .
[6] Thia Kirubarajan,et al. Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .
[7] Michael J. Dueker,et al. Non-Markovian Regime Switching with Endogenous States and Time-Varying State Strengths , 2004 .
[8] Fredrik Gustafsson,et al. Adaptive filtering and change detection , 2000 .
[9] Christophe Andrieu,et al. Efficient particle filtering for jump Markov systems. Application to time-varying autoregressions , 2003, IEEE Trans. Signal Process..
[10] George W. Irwin,et al. Multiple model bootstrap filter for maneuvering target tracking , 2000, IEEE Trans. Aerosp. Electron. Syst..
[11] Vikram Krishnamurthy,et al. Expectation maximization algorithms for MAP estimation of jump Markov linear systems , 1999, IEEE Trans. Signal Process..
[12] A. Farina,et al. Error performance bounds for tracking a manoeuvring target , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.
[13] Harry L. Van Trees,et al. Detection, Estimation, and Modulation Theory, Part I , 1968 .
[14] K. Fu,et al. On state estimation in switching environments , 1968 .
[15] Jitendra Tugnait,et al. Adaptive estimation and identification for discrete systems with Markov jump parameters , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.
[16] H. V. Trees,et al. Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking , 2007 .
[17] A. Farina,et al. International Conference on Information Fusion ( FUSION ) A Performance Bound for Manoeuvring Target Tracking Using Best-Fitting Gaussian Distrbutions , 2006 .
[18] Y. Boers,et al. Efficient particle filter for jump Markov nonlinear systems , 2005 .
[19] J. Mendel,et al. Maximum-Likelihood Deconvolution: A Journey into Model-Based Signal Processing , 1990 .
[20] Nando de Freitas,et al. Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.
[21] R. P. Marques,et al. Discrete-Time Markov Jump Linear Systems , 2004, IEEE Transactions on Automatic Control.
[22] A. Farina,et al. Performance measure for Markovian switching systems using best-fitting Gaussian distributions , 2008, IEEE Transactions on Aerospace and Electronic Systems.
[23] Pramod K. Varshney,et al. Conditional Posterior Cramér–Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation , 2012, IEEE Transactions on Signal Processing.
[24] G. A. Ackerson,et al. On state estimation in switching environments , 1968 .
[25] M. Zakai,et al. Some Classes of Global Cramer-Rao Bounds , 1987 .
[26] Carlos H. Muravchik,et al. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..
[27] Pramod K. Varshney,et al. Conditional Posterior Cramér-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation , 2011, IEEE Trans. Signal Process..