Compressing random microstructures via stochastic Wang tilings.

This Rapid Communication presents a stochastic Wang tiling-based technique to compress or reconstruct disordered microstructures on the basis of given spatial statistics. Unlike the existing approaches based on a single unit cell, it utilizes a finite set of tiles assembled by a stochastic tiling algorithm, thereby allowing to accurately reproduce long-range orientation orders in a computationally efficient manner. Although the basic features of the method are demonstrated for a two-dimensional particulate suspension, the present framework is fully extensible to generic multidimensional media.

[1]  Hao Wang Proving theorems by pattern recognition — II , 1961 .

[2]  A Tudor,et al.  Three-dimensional reconstruction of statistically optimal unit cells of polydisperse particulate composites from microtomography. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  G. C. Shephard,et al.  Tilings and Patterns , 1990 .

[4]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[5]  R. Robinson Undecidability and nonperiodicity for tilings of the plane , 1971 .

[6]  Andrew Glassner Crop art. Part 1. Computer graphics , 2004, IEEE Computer Graphics and Applications.

[7]  S. Papson,et al.  “Model” , 1981 .

[8]  J. Zeman,et al.  Microstructural enrichment functions based on stochastic Wang tilings , 2011, 1110.4183.

[9]  Rintoul,et al.  Reconstruction of the Structure of Dispersions , 1997, Journal of colloid and interface science.

[10]  V. Hejtmánek,et al.  Stochastic Reconstruction of Particulate Media Using Simulated Annealing: Improving Pore Connectivity , 2009 .

[11]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[12]  Erik D. Demaine,et al.  Jigsaw Puzzles, Edge Matching, and Polyomino Packing: Connections and Complexity , 2007, Graphs Comb..

[13]  F. Stillinger,et al.  A superior descriptor of random textures and its predictive capacity , 2009, Proceedings of the National Academy of Sciences.

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  G. Povirk,et al.  Incorporation of microstructural information into models of two-phase materials , 1995 .

[16]  R. Piasecki,et al.  Entropic descriptor of a complex behaviour , 2010 .

[17]  Karel Culík,et al.  An aperiodic set of 13 Wang tiles , 1996, Discret. Math..

[18]  Ares Lagae,et al.  A Comparison of Methods for Generating Poisson Disk Distributions , 2008, Comput. Graph. Forum.

[19]  Corey Marks Bell , 2010 .

[20]  Michal Šejnoha,et al.  From random microstructures to representative volume elements , 2007 .

[21]  Charles Radin,et al.  First order phase transition in a model of quasicrystals , 2011, 1102.1982.

[22]  David S. Ebert,et al.  Volume illustration using wang cubes , 2007, TOGS.

[23]  W. Marsden I and J , 2012 .

[24]  M. Davis,et al.  Statistically reconstructing continuous isotropic and anisotropic two-phase media while preserving macroscopic material properties. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  S. Torquato Random Heterogeneous Materials , 2002 .

[26]  S. Torquato,et al.  Reconstructing random media , 1998 .