Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion

Abstract This paper deals with a boundary-value problem in three-dimensional smoothly bounded domains for a coupled chemotaxis-Stokes system generalizing the prototype { n t + u ⋅ ∇ n = Δ n m − ∇ ⋅ ( n ∇ c ) , c t + u ⋅ ∇ c = Δ c − n c , u t + ∇ P = Δ u + n ∇ ϕ , ∇ ⋅ u = 0 , which describes the motion of oxygen-driven swimming bacteria in an incompressible fluid. It is proved that global weak solutions exist whenever m > 8 7 and the initial data ( n 0 , c 0 , u 0 ) are sufficiently regular satisfying n 0 > 0 and c 0 > 0 . This extends a recent result by Di Francesco, Lorz and Markowich [M. Di Francesco, A. Lorz, P.A. Markowich, Chemotaxis–fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior, Discrete Contin. Dyn. Syst. Ser. A 28 (2010) 1437–1453] which asserts global existence of weak solutions under the constraint m ∈ [ 7 + 217 12 , 2 ] .

[1]  Yoshikazu Giga,et al.  Abstract LP estimates for the Cauchy problem with applications to the Navier‐Stokes equations in exterior domains , 1991 .

[2]  F. Rühs,et al.  J. L. Lions, Équations Différentielles Opérationnelles et Problèmes aux Limites. IX + 292 S. Berlin/Göttingen/Heidelberg 1961. Springer-Verlag. Preis geb. 64,— , 1962 .

[3]  R. Goldstein,et al.  Self-concentration and large-scale coherence in bacterial dynamics. , 2004, Physical review letters.

[4]  José A. Carrillo,et al.  Volume effects in the Keller-Segel model : energy estimates preventing blow-up , 2006 .

[5]  Yoshie Sugiyama,et al.  On ε-Regularity Theorem and Asymptotic Behaviors of Solutions for Keller-Segel Systems , 2009, SIAM J. Math. Anal..

[6]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[7]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[8]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[9]  Alexander Lorz,et al.  COUPLED CHEMOTAXIS FLUID MODEL , 2010 .

[10]  T. Senba,et al.  A quasi-linear parabolic system of chemotaxis , 2006 .

[11]  Sachiko Ishida,et al.  Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data , 2012 .

[12]  H. Sohr,et al.  The Navier-Stokes Equations: An Elementary Functional Analytic Approach , 2012 .

[13]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[14]  Alexander Lorz,et al.  Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior , 2010 .

[15]  Y. Giga,et al.  Abstract $L^p$ estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains(Evolution Equations and Applications to Nonlinear Problems) , 1990 .

[16]  Youshan Tao,et al.  Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion , 2012 .

[17]  R. Kowalczyk,et al.  Preventing blow-up in a chemotaxis model , 2005 .

[18]  Alexander Lorz,et al.  A coupled chemotaxis-fluid model: Global existence , 2011 .

[19]  Michael Winkler,et al.  Does a ‘volume‐filling effect’ always prevent chemotactic collapse? , 2010 .

[20]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[21]  Mark A. J. Chaplain,et al.  Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions , 2009 .

[22]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[23]  J. Lions,et al.  Équations Différentielles Opérationnelles Et Problèmes Aux Limites , 1961 .

[24]  J. Vázquez The Porous Medium Equation , 2006 .

[25]  Harald Garcke,et al.  On A Fourth-Order Degenerate Parabolic Equation: Global Entropy Estimates, Existence, And Qualitativ , 1998 .

[26]  Michael Winkler,et al.  A critical exponent in a degenerate parabolic equation , 2002 .

[27]  Michael Winkler,et al.  Finite-time blow-up in a quasilinear system of chemotaxis , 2008 .

[28]  Youshan Tao,et al.  Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity , 2011, 1106.5345.

[29]  P. Lions Résolution de problèmes elliptiques quasilinéaires , 1980 .

[30]  Michael Winkler,et al.  A Chemotaxis-Haptotaxis Model: The Roles of Nonlinear Diffusion and Logistic Source , 2011, SIAM J. Math. Anal..

[31]  Dirk Horstmann,et al.  Boundedness vs. blow-up in a chemotaxis system , 2005 .

[32]  I. Tuval,et al.  Bacterial swimming and oxygen transport near contact lines. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Hantaek Bae Navier-Stokes equations , 1992 .

[34]  Alexander Lorz,et al.  Global Solutions to the Coupled Chemotaxis-Fluid Equations , 2010 .

[35]  Michael Winkler,et al.  Global Large-Data Solutions in a Chemotaxis-(Navier–)Stokes System Modeling Cellular Swimming in Fluid Drops , 2012 .