Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion
暂无分享,去创建一个
[1] Yoshikazu Giga,et al. Abstract LP estimates for the Cauchy problem with applications to the Navier‐Stokes equations in exterior domains , 1991 .
[2] F. Rühs,et al. J. L. Lions, Équations Différentielles Opérationnelles et Problèmes aux Limites. IX + 292 S. Berlin/Göttingen/Heidelberg 1961. Springer-Verlag. Preis geb. 64,— , 1962 .
[3] R. Goldstein,et al. Self-concentration and large-scale coherence in bacterial dynamics. , 2004, Physical review letters.
[4] José A. Carrillo,et al. Volume effects in the Keller-Segel model : energy estimates preventing blow-up , 2006 .
[5] Yoshie Sugiyama,et al. On ε-Regularity Theorem and Asymptotic Behaviors of Solutions for Keller-Segel Systems , 2009, SIAM J. Math. Anal..
[6] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[7] Jacques Simeon,et al. Compact Sets in the Space L~(O, , 2005 .
[8] K. Painter,et al. A User's Guide to Pde Models for Chemotaxis , 2022 .
[9] Alexander Lorz,et al. COUPLED CHEMOTAXIS FLUID MODEL , 2010 .
[10] T. Senba,et al. A quasi-linear parabolic system of chemotaxis , 2006 .
[11] Sachiko Ishida,et al. Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data , 2012 .
[12] H. Sohr,et al. The Navier-Stokes Equations: An Elementary Functional Analytic Approach , 2012 .
[13] J. Simon. Compact sets in the spaceLp(O,T; B) , 1986 .
[14] Alexander Lorz,et al. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior , 2010 .
[15] Y. Giga,et al. Abstract $L^p$ estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains(Evolution Equations and Applications to Nonlinear Problems) , 1990 .
[16] Youshan Tao,et al. Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion , 2012 .
[17] R. Kowalczyk,et al. Preventing blow-up in a chemotaxis model , 2005 .
[18] Alexander Lorz,et al. A coupled chemotaxis-fluid model: Global existence , 2011 .
[19] Michael Winkler,et al. Does a ‘volume‐filling effect’ always prevent chemotactic collapse? , 2010 .
[20] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[21] Mark A. J. Chaplain,et al. Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions , 2009 .
[22] O. A. Ladyzhenskai︠a︡,et al. Linear and Quasi-linear Equations of Parabolic Type , 1995 .
[23] J. Lions,et al. Équations Différentielles Opérationnelles Et Problèmes Aux Limites , 1961 .
[24] J. Vázquez. The Porous Medium Equation , 2006 .
[25] Harald Garcke,et al. On A Fourth-Order Degenerate Parabolic Equation: Global Entropy Estimates, Existence, And Qualitativ , 1998 .
[26] Michael Winkler,et al. A critical exponent in a degenerate parabolic equation , 2002 .
[27] Michael Winkler,et al. Finite-time blow-up in a quasilinear system of chemotaxis , 2008 .
[28] Youshan Tao,et al. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity , 2011, 1106.5345.
[29] P. Lions. Résolution de problèmes elliptiques quasilinéaires , 1980 .
[30] Michael Winkler,et al. A Chemotaxis-Haptotaxis Model: The Roles of Nonlinear Diffusion and Logistic Source , 2011, SIAM J. Math. Anal..
[31] Dirk Horstmann,et al. Boundedness vs. blow-up in a chemotaxis system , 2005 .
[32] I. Tuval,et al. Bacterial swimming and oxygen transport near contact lines. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[33] Hantaek Bae. Navier-Stokes equations , 1992 .
[34] Alexander Lorz,et al. Global Solutions to the Coupled Chemotaxis-Fluid Equations , 2010 .
[35] Michael Winkler,et al. Global Large-Data Solutions in a Chemotaxis-(Navier–)Stokes System Modeling Cellular Swimming in Fluid Drops , 2012 .