Simulation of complex nonlinear elastic bodies using lattice deformers

Lattice deformers are a popular option for modeling the behavior of elastic bodies as they avoid the need for conforming mesh generation, and their regular structure offers significant opportunities for performance optimizations. Our work expands the scope of current lattice-based elastic deformers, adding support for a number of important simulation features. We accommodate complex nonlinear, optionally anisotropic materials while using an economical one-point quadrature scheme. Our formulation fully accommodates near-incompressibility by enforcing accurate nonlinear constraints, supports implicit integration for large time steps, and is not susceptible to locking or poor conditioning of the discrete equations. Additionally, we increase the accuracy of our solver by employing a novel high-order quadrature scheme on lattice cells overlapping with the model boundary, which are treated at sub-cell precision. Finally, we detail how this accurate boundary treatment can be implemented at a minimal computational premium over the cost of a voxel-accurate discretization. We demonstrate our method in the simulation of complex musculoskeletal human models.

[1]  SifakisEftychios,et al.  Simulation of complex nonlinear elastic bodies using lattice deformers , 2012 .

[2]  Jernej Barbic,et al.  FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction , 2012, SIGGRAPH '12.

[3]  Rüdiger Westermann,et al.  Corotated Finite Elements Made Fast and Stable , 2008, VRIPHYS.

[4]  Ronald Fedkiw,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Hybrid Simulation of Deformable Solids , 2022 .

[5]  Doug L. James,et al.  FastLSM: fast lattice shape matching for robust real-time deformation , 2007, ACM Trans. Graph..

[6]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, ACM Trans. Graph..

[7]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[8]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Compressible Flows , 1999 .

[9]  Markus H. Gross,et al.  Physically-based simulation of objects represented by surface meshes , 2004, Proceedings Computer Graphics International, 2004..

[10]  Ronald Fedkiw,et al.  Volume conserving finite element simulations of deformable models , 2007, ACM Trans. Graph..

[11]  Ronald Fedkiw,et al.  Robust quasistatic finite elements and flesh simulation , 2005, SCA '05.

[12]  Szymon Rusinkiewicz,et al.  Estimating the Laplace‐Beltrami Operator by Restricting 3D Functions , 2009, Comput. Graph. Forum.

[13]  Eitan Grinspun,et al.  To appear in the ACM SIGGRAPH conference proceedings Efficient Simulation of Inextensible Cloth , 2007 .

[14]  Matthias Müller,et al.  Physically-based simulation of objects represented by surface meshes , 2004 .

[15]  Eftychios Sifakis,et al.  A parallel multigrid Poisson solver for fluids simulation on large grids , 2010, SCA '10.

[16]  John B. Bell,et al.  A Cartesian Grid Projection Method for the Incompressible Euler Equations in Complex Geometries , 1994, SIAM J. Sci. Comput..

[17]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[18]  R. Freund,et al.  A new Krylov-subspace method for symmetric indefinite linear systems , 1994 .

[19]  Robert Bridson,et al.  Animating developable surfaces using nonconforming elements , 2008, ACM Trans. Graph..

[20]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[21]  Raanan Fattal,et al.  Efficient simulation of inextensible cloth , 2007, SIGGRAPH 2007.

[22]  Nancy S. Pollard,et al.  Fast simulation of skeleton-driven deformable body characters , 2011, TOGS.

[23]  Eftychios Sifakis,et al.  Comprehensive biomechanical modeling and simulation of the upper body , 2009, TOGS.

[24]  Ronald Fedkiw,et al.  Coupling water and smoke to thin deformable and rigid shells , 2005, SIGGRAPH '05.

[25]  Robert Bridson,et al.  Animating developable surfaces using nonconforming elements , 2008, SIGGRAPH 2008.

[26]  Eftychios Sifakis,et al.  A second order virtual node method for elliptic problems with interfaces and irregular domains in three dimensions , 2012, J. Comput. Phys..

[27]  G. Turk,et al.  Fast viscoelastic behavior with thin features , 2008, SIGGRAPH 2008.

[28]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[29]  Eftychios Sifakis,et al.  An efficient multigrid method for the simulation of high-resolution elastic solids , 2010, TOGS.

[30]  J. Marsden,et al.  Tricubic interpolation in three dimensions , 2005 .

[31]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Partial Differential Equations , 1999 .

[32]  D. Arnold Mixed finite element methods for elliptic problems , 1990 .

[33]  Yohan Payan,et al.  Animating Shapes at Arbitrary Resolution with Non-Uniform Stiffness , 2006, VRIPHYS.

[34]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[35]  Eftychios Sifakis,et al.  Efficient elasticity for character skinning with contact and collisions , 2011, ACM Trans. Graph..

[36]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, SIGGRAPH 2007.

[37]  Mathieu Desbrun,et al.  Numerical coarsening of inhomogeneous elastic materials , 2009, SIGGRAPH 2009.

[38]  R. Fedkiw,et al.  Online Submission ID: papers 0432 Volume Conserving Finite Element Simulations of Deformable Models , 2022 .

[39]  Greg Turk,et al.  Fast viscoelastic behavior with thin features , 2008, ACM Trans. Graph..

[40]  E. Guendelman,et al.  Coupling water and smoke to thin deformable and rigid shells , 2005, SIGGRAPH 2005.

[41]  T. Belytschko,et al.  Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .