Magnetoelectric micromachines with wirelessly controlled navigation and functionality

The use of a single energy source for both manipulating micromachines and triggering their functionalities will result in highly integrated devices and simplify the design of the controlling platform. Here, we demonstrate this concept employing magnetoelectric Janus particle-based micromachines, which are fabricated by coating SiO2 microspheres with a CoFe2O4–BaTiO3 bilayer composite. While the inner magnetic CoFe2O4 layer enables the micromachines to be maneuvered using low magnitude rotating magnetic fields, the magnetoelectric bilayer composite provides the ability to remotely generate electric charges upon the application of a time-varying magnetic field. To demonstrate the capabilities of these micromachines, noble metals such as Au, Ag and Pt are magnetoelectrochemically reduced from their corresponding precursor salts and form nanoparticles on the surface of the micromachines. Magnetoelectric micromachines are promising devices for their use as metal scavengers, cell stimulators and electric field-assisted drug delivery agents.

[1]  Xiaohui Yan,et al.  Magnetic Actuation Based Motion Control for Microrobots: An Overview , 2015, Micromachines.

[2]  Jian Shi,et al.  Piezopotential-driven redox reactions at the surface of piezoelectric materials. , 2012, Angewandte Chemie.

[3]  Lixin Dong,et al.  Artificial bacterial flagella: Fabrication and magnetic control , 2009 .

[4]  Angelo S. Mao,et al.  An Integrated Microrobotic Platform for On‐Demand, Targeted Therapeutic Interventions , 2014, Advanced materials.

[5]  H. Meng,et al.  A review of stimuli-responsive shape memory polymer composites , 2013 .

[6]  Xin Guo Insulator-to-semiconductor transition of nanocrystalline BaTiO3 at temperatures ≤200 °C. , 2014, Physical chemistry chemical physics : PCCP.

[7]  Franziska Ullrich,et al.  Electroforming of Implantable Tubular Magnetic Microrobots for Wireless Ophthalmologic Applications , 2015, Advanced healthcare materials.

[8]  Chi-Jung Chang,et al.  Fabrications and Applications of Stimulus-Responsive Polymer Films and Patterns on Surfaces: A Review , 2014, Materials.

[9]  Denys Makarov,et al.  Fuel-free locomotion of Janus motors: magnetically induced thermophoresis. , 2013, ACS nano.

[10]  D. Viehland,et al.  Magneto-Electro-Chemical Behavior of BaTiO3-CoFe2O4 Self-Assembled Thin Films , 2011 .

[11]  G. Rohrer,et al.  Spatially Selective Photochemical Reduction of Silver on the Surface of Ferroelectric Barium Titanate , 2001 .

[12]  Samuel Sanchez,et al.  Catalytic Janus motors on microfluidic chip: deterministic motion for targeted cargo delivery. , 2012, ACS nano.

[13]  Steve Dunn,et al.  Atomic Polarization and Local Reactivity on Ferroelectric Surfaces: A New Route toward Complex Nanostructures , 2002 .

[14]  Martin Pumera,et al.  Geometric asymmetry driven Janus micromotors. , 2014, Nanoscale.

[15]  Jeongmin Hong,et al.  Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers , 2013, Nature Communications.

[16]  Xiaomiao Feng,et al.  Seawater-driven magnesium based Janus micromotors for environmental remediation. , 2013, Nanoscale.

[17]  F. Qiu,et al.  Controlled In Vivo Swimming of a Swarm of Bacteria‐Like Microrobotic Flagella , 2015, Advanced materials.

[18]  George J. Pappas,et al.  Single Cell Manipulation using Ferromagnetic Composite Microtransporters , 2010 .

[19]  Benedikt F. Seitz,et al.  Undulatory Locomotion of Magnetic Multilink Nanoswimmers. , 2015, Nano letters.

[20]  Mingjun Xuan,et al.  Self-propelled Janus mesoporous silica nanomotors with sub-100 nm diameters for drug encapsulation and delivery. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[21]  M. Steigerwald,et al.  Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3. , 2008, Journal of the American Chemical Society.

[22]  Wei Wang,et al.  Small power: Autonomous nano- and micromotors propelled by self-generated gradients , 2013 .

[23]  Daniel Ahmed,et al.  Tunable, pulsatile chemical gradient generation via acoustically driven oscillating bubbles. , 2013, Lab on a chip.

[24]  C. Hierold,et al.  Superparamagnetic Twist‐Type Actuators with Shape‐Independent Magnetic Properties and Surface Functionalization for Advanced Biomedical Applications , 2014 .

[25]  A. Williams,et al.  Anisotropy and Magnetostriction of Some Ferrites , 1955 .

[26]  J. Scott Applications of magnetoelectrics , 2012 .

[27]  Huiru Ma,et al.  Self-propelled micromotors driven by the magnesium-water reaction and their hemolytic properties. , 2013, Angewandte Chemie.

[28]  Martin Pumera,et al.  Chemical energy powered nano/micro/macromotors and the environment. , 2015, Chemistry.

[29]  Li Zhang,et al.  Controlled propulsion and cargo transport of rotating nickel nanowires near a patterned solid surface. , 2010, ACS nano.

[30]  Ioannis K. Kaliakatsos,et al.  Microrobots for minimally invasive medicine. , 2010, Annual review of biomedical engineering.

[31]  Jake J. Abbott,et al.  How Should Microrobots Swim? , 2009 .

[32]  Raymond Kapral,et al.  Chemistry in motion: tiny synthetic motors. , 2014, Accounts of chemical research.

[33]  Wei Gao,et al.  The environmental impact of micro/nanomachines: a review. , 2014, ACS nano.

[34]  J. Prieto,et al.  Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. , 2007, Nature materials.

[35]  Sakhrat Khizroev,et al.  Magneto-electric Nanoparticles to Enable Field-controlled High-Specificity Drug Delivery to Eradicate Ovarian Cancer Cells , 2013, Scientific Reports.

[36]  Denys Makarov,et al.  Control over Janus micromotors by the strength of a magnetic field. , 2013, Nanoscale.

[37]  Salvador Pané,et al.  Hybrid helical magnetic microrobots obtained by 3D template-assisted electrodeposition. , 2014, Small.

[38]  Vijay Kumar,et al.  Automated biomanipulation of single cells using magnetic microrobots , 2013, Int. J. Robotics Res..

[39]  R. Ramesh,et al.  Multiferroics: progress and prospects in thin films. , 2007, Nature materials.

[40]  D. Bonnell,et al.  Polarization and local reactivity on organic ferroelectric surfaces: ferroelectric nanolithography using poly(vinylidene fluoride). , 2007, ACS nano.

[41]  B. Nelson,et al.  Magnetically driven Bi2O3/BiOCl-based hybrid microrobots for photocatalytic water remediation , 2015 .

[42]  T. Huang,et al.  Selectively manipulable acoustic-powered microswimmers , 2015, Scientific Reports.

[43]  Influence of strain on the magnetization and magnetoelectric effect inLa0.7A0.3MnO3∕PMN−PT(001)(A=Sr,Ca) , 2006, cond-mat/0609760.

[44]  R. Guduru,et al.  Magnetic Field‐Controlled Release of Paclitaxel Drug from Functionalized Magnetoelectric Nanoparticles , 2014 .

[45]  Daniela A Wilson,et al.  Manipulation of micro- and nanostructure motion with magnetic fields. , 2014, Soft matter.

[46]  L. Eng,et al.  Ferroelectric lithography: bottom-up assembly and electrical performance of a single metallic nanowire. , 2009, Nano letters.

[47]  Qiang He,et al.  Motion-based, high-yielding, and fast separation of different charged organics in water. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[48]  Huifang Xu,et al.  Piezoelectrochemical Effect: A New Mechanism for Azo Dye Decolorization in Aqueous Solution through Vibrating Piezoelectric Microfibers , 2012 .

[49]  A. O'Neill,et al.  Ferroelectric properties in thin film barium titanate grown using pulsed laser deposition , 2014 .

[50]  Nathan J. Jenness,et al.  Towards Holonomic Control of Janus Particles in Optomagnetic Traps , 2009, Advanced materials.

[51]  Samuel Sánchez,et al.  Chemically powered micro- and nanomotors. , 2015, Angewandte Chemie.

[52]  Xudong Wang,et al.  Fundamental Analysis of Piezocatalysis Process on the Surfaces of Strained Piezoelectric Materials , 2013, Scientific Reports.