Metal-oxide films with magnetically-modulated nanoporous architectures

A magnetically-driven method for controlling nano- dimensional porosity in sol gel derived metal oxide films, including TiO2, Al2O3, and SnO2, coated onto ferromagnetic amorphous substrates, such as the magnetically-soft Metglas alloys, is described. Based on the porous structures observed dependence on external magnetic field, a model is suggested to explain the phenomena. Under well-defined conditions it appears that the sol particles coming out of solution, and undergoing Brownian motion, follow the magnetic field lines oriented perpendicularly to the substrate surface associated with the magnetic domain walls of the substrate; hence the porosity developed during solvent evaporation correlates with the magnetic domain size.

[1]  C A Grimes,et al.  Magnetoelastic sensors in combination with nanometer-scale honeycombed thin film ceramic TiO2 for remote query measurement of humidity. , 2000, Journal of applied physics.

[2]  O. Pitois,et al.  Polymer films with a self‐organized honeycomb morphology , 1995 .

[3]  J. Gutiérrez,et al.  Magnetoelastic Properties of Some Fe-Rich Fe-Co-Si-B Metallic Glasses , 1989, 16 January.

[4]  D. Pribat,et al.  Microionic gas sensor for pollution and energy control in the consumer market , 1988 .

[5]  Photovoltaic Effect in Titanium Dioxide/Zinc Phthalocyanine Cell , 1996 .

[6]  S. Jenekhe,et al.  Self-assembly of ordered microporous materials from rod-coil block copolymers , 1999, Science.

[7]  B D Boyan,et al.  Role of material surfaces in regulating bone and cartilage cell response. , 1996, Biomaterials.

[8]  D. Pine,et al.  Uniform Macroporous Ceramics and Plastics by Emulsion Templating , 1998 .

[9]  C. Grimes,et al.  Metal–oxide films with magnetically-modulated nanoporous architectures , 2001 .

[10]  U. Wiesner,et al.  Organically modified aluminosilicate mesostructures from block copolymer phases , 1997, Science.

[11]  W. Sproul,et al.  Modeling magnetic fields of magnetron sputtering systems , 1991 .

[12]  T. Webster,et al.  Osteoblast adhesion on nanophase ceramics. , 1999, Biomaterials.

[13]  J. Ying,et al.  Nanocrystalline Cerium Oxide Catalytic Materials , 1994 .

[14]  M. Prutton,et al.  Thin ferromagnetic films , 1964 .

[15]  H. Bowen,et al.  High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetratethoxide. 2. Aqueous interfacial electrochemistry and dispersion stability , 1985 .

[16]  C. Shearwood,et al.  Amorphous melt spun ribbons and sputtered thin films — investigation of the magnetic domain structures by TEM , 1995 .

[17]  能勢 宏 R.F. Soohoo: Magnetic Thin Films, Harper & Row, New York, c1965, 316頁, 18×26.5cm, 4,700円. , 1965 .

[18]  H. Bowen,et al.  High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide. 1. Synthesis and physical properties , 1985 .

[19]  Y. Ito,et al.  Surface micropatterning to regulate cell functions. , 1999, Biomaterials.

[20]  Lesile Glasser The chemistry of silica: By Ralph K. Iller. Pp. vii+ 866. Wiley, Chichester. 1979, £39.50 , 1980 .

[21]  A. Tsuzuki,et al.  Crystal structures of TiO2 thin coatings prepared from the alkoxide solution via the dip-coating technique affecting the photocatalytic decomposition of aqueous acetic acid , 1994, Journal of Materials Science.

[22]  David S. Ballantine,et al.  Acoustic wave sensors : theory, design, and physico-chemical applications , 1997 .

[23]  Craig A. Grimes,et al.  Magnetoelastic sensors for remote query environmental monitoring , 1999 .

[24]  C. W. Turner Sol-gel process-principles and applications , 1991 .

[25]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[26]  Alan J. Hurd,et al.  Review of sol-gel thin film formation , 1992 .

[27]  C. Lampert,et al.  Electrochromic characterization of sol-gel deposited coatings , 1998 .

[28]  I. Lauermann,et al.  Temperature- and oxygen partial pressure-dependent electrical conductivity in nanoporous rutile and anatase , 1999 .

[29]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[30]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[31]  R. J. Hunter,et al.  Zeta Potential in Colloid Science , 1981 .

[32]  Bernard François,et al.  Self-organized honeycomb morphology of star-polymer polystyrene films , 1994, Nature.

[33]  A. Stein,et al.  Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids , 1998, Science.

[34]  A. Fujishima,et al.  Preparation of a New Nanostructured TiO2 Surface Using a Two-Dimensional Array-Based Template , 1997 .

[35]  Clément Sanchez,et al.  Sol-gel chemistry of transition metal oxides , 1988 .

[36]  Ronald F. Soohoo,et al.  Magnetic Thin Films , 2020, Magnetic Memory Technology.

[37]  J. Y. Martin,et al.  Effect of titanium surface roughness on chondrocyte proliferation, matrix production, and differentiation depends on the state of cell maturation. , 1996, Journal of biomedical materials research.

[38]  S. Szymura,et al.  Domain structure, magnetic and mechanical properties of NdFeB magnets with different grain size , 1994 .

[39]  J. Coey,et al.  A TEM investigation of microstructure and domain configurations in melt-spun SmFe11Ti , 1992 .

[40]  O. Velev,et al.  Porous silica via colloidal crystallization , 1997, Nature.

[41]  G. A. Parks,et al.  THE ZERO POINT OF CHARGE OF OXIDES1 , 1962 .

[42]  K. G. Ong,et al.  A resonant printed-circuit sensor for remote query monitoring of environmental parameters , 2000 .

[43]  M. Ferrari,et al.  Nanopore Technology for Biomedical Applications , 1999 .