Ancient origin of the integrin-mediated adhesion and signaling machinery

The evolution of animals (metazoans) from their unicellular ancestors required the emergence of novel mechanisms for cell adhesion and cell–cell communication. One of the most important cell adhesion mechanisms for metazoan development is integrin-mediated adhesion and signaling. The integrin adhesion complex mediates critical interactions between cells and the extracellular matrix, modulating several aspects of cell physiology. To date this machinery has been considered strictly metazoan specific. Here we report the results of a comparative genomic analysis of the integrin adhesion machinery, using genomic data from several unicellular relatives of Metazoa and Fungi. Unexpectedly, we found that core components of the integrin adhesion complex are encoded in the genome of the apusozoan protist Amastigomonas sp., and therefore their origins predate the divergence of Opisthokonta, the clade that includes metazoans and fungi. Furthermore, our analyses suggest that key components of this apparatus have been lost independently in fungi and choanoflagellates. Our data highlight the fact that many of the key genes that had formerly been cited as crucial for metazoan origins have a much earlier origin. This underscores the importance of gene cooption in the unicellular-to-multicellular transition that led to the emergence of the Metazoa.

[1]  N. King,et al.  The Premetazoan Ancestry of Cadherins , 2008, Science.

[2]  N. King,et al.  Signaling Properties of a Non-metazoan Src Kinase and the Evolutionary History of Src Negative Regulation* , 2008, Journal of Biological Chemistry.

[3]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[4]  Y. Inagaki,et al.  Capsaspora owczarzaki is an independent opisthokont lineage , 2004, Current Biology.

[5]  B. Lang,et al.  Phylogenomic analyses predict sistergroup relationship of nucleariids and Fungi and paraphyly of zygomycetes with significant support , 2009, BMC Evolutionary Biology.

[6]  B. Lang,et al.  The Closest Unicellular Relatives of Animals , 2002, Current Biology.

[7]  R. Zaidel-Bar Evolution of complexity in the integrin adhesome , 2009, Journal of Cell Biology.

[8]  P. Bork,et al.  Evolution of the phospho-tyrosine signaling machinery in premetazoan lineages , 2008, Proceedings of the National Academy of Sciences.

[9]  C. Burge,et al.  Computational inference of homologous gene structures in the human genome. , 2001, Genome research.

[10]  J. Heino,et al.  Integrins during evolution: evolutionary trees and model organisms. , 2009, Biochimica et biophysica acta.

[11]  K. Djinović-Carugo,et al.  α-Actinin structure and regulation , 2008, Cellular and Molecular Life Sciences.

[12]  R. Juliano,et al.  Integrin Signaling , 2005, Cancer and Metastasis Reviews.

[13]  Gerard Manning,et al.  The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan , 2008, Proceedings of the National Academy of Sciences.

[14]  Nicholas H. Putnam,et al.  The Trichoplax genome and the nature of placozoans , 2008, Nature.

[15]  R. Liddington,et al.  Structural Basis of Integrin Activation by Talin , 2007, Cell.

[16]  S. Baldauf,et al.  The protistan origins of animals and fungi. , 2006, Molecular biology and evolution.

[17]  Burkhard Morgenstern,et al.  AUGUSTUS: ab initio prediction of alternative transcripts , 2006, Nucleic Acids Res..

[18]  B. Degnan,et al.  Genesis and expansion of metazoan transcription factor gene classes. , 2008, Molecular biology and evolution.

[19]  K. Kuma,et al.  Ancient divergence of animal protein tyrosine kinase genes demonstrated by a gene family tree including choanoflagellate genes , 2008, FEBS Letters.

[20]  David R Critchley,et al.  The structure and regulation of vinculin. , 2006, Trends in cell biology.

[21]  N. Brown Faculty Opinions recommendation of Crystal structure of the extracellular segment of integrin alpha Vbeta3. , 2001 .

[22]  C. Turner,et al.  Paxillin comes of age , 2008, Journal of Cell Science.

[23]  S. Baldauf,et al.  Molecular phylogeny of choanoflagellates, the sister group to Metazoa , 2008, Proceedings of the National Academy of Sciences.

[24]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[25]  Alex de Mendoza,et al.  Evolution of the MAGUK protein gene family in premetazoan lineages , 2010, BMC Evolutionary Biology.

[26]  Richard O. Hynes,et al.  Integrins: Versatility, modulation, and signaling in cell adhesion , 1992, Cell.

[27]  V. Eldholm,et al.  Natural genetic transformation: prevalence, mechanisms and function. , 2007, Research in microbiology.

[28]  J. Brugge,et al.  Src kinase activation by direct interaction with the integrin β cytoplasmic domain , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Nicholas H. Putnam,et al.  Sea Anemone Genome Reveals Ancestral Eumetazoan Gene Repertoire and Genomic Organization , 2007, Science.

[30]  David J. Miller,et al.  Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians. , 2005, Trends in genetics : TIG.

[31]  T. Cavalier-smith,et al.  Evolutionary position of breviate amoebae and the primary eukaryote divergence , 2009, Proceedings of the Royal Society B: Biological Sciences.

[32]  D. Hayward,et al.  Molecular evolution of integrins: genes encoding integrin beta subunits from a coral and a sponge. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[33]  K. Tamura,et al.  Phylogeny of the Drosophila immigrans Species Group (Diptera: Drosophilidae) Based on Adh and Gpdh Sequences , 2007, Zoological science.

[34]  Thilo Stehle,et al.  Crystal Structure of the Extracellular Segment of Integrin αVβ3 , 2001, Science.

[35]  A. Simpson,et al.  Evolutionary relationships of apusomonads inferred from taxon-rich analyses of 6 nuclear encoded genes. , 2006, Molecular biology and evolution.

[36]  A. Roger,et al.  Insights into the Evolutionary Origin and Genome Architecture of the Unicellular Opisthokonts Capsaspora owczarzaki and Sphaeroforma arctica , 2006, The Journal of eukaryotic microbiology.

[37]  M. Humphries,et al.  Distinct Roles of β1 Metal Ion-dependent Adhesion Site (MIDAS), Adjacent to MIDAS (ADMIDAS), and Ligand-associated Metal-binding Site (LIMBS) Cation-binding Sites in Ligand Recognition by Integrin α2β1* , 2008, Journal of Biological Chemistry.

[38]  S. Charette,et al.  An adhesion molecule in free‐living Dictyostelium amoebae with integrin β features , 2006, EMBO reports.

[39]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[40]  B Franz Lang,et al.  A phylogenomic investigation into the origin of metazoa. , 2008, Molecular biology and evolution.

[41]  B. Degnan,et al.  The transcription factor NF-κB in the demosponge Amphimedon queenslandica: insights on the evolutionary origin of the Rel homology domain , 2008, Development Genes and Evolution.

[42]  David R Critchley,et al.  Biochemical and structural properties of the integrin-associated cytoskeletal protein talin. , 2009, Annual review of biophysics.

[43]  G. Richards,et al.  Early evolution of metazoan transcription factors. , 2009, Current opinion in genetics & development.

[44]  T. Cavalier-smith,et al.  Phylogeny of Choanozoa, Apusozoa, and Other Protozoa and Early Eukaryote Megaevolution , 2003, Journal of Molecular Evolution.

[45]  David S. Harburger,et al.  Integrin signalling at a glance , 2009, Journal of Cell Science.

[46]  C. Turner,et al.  Integrin-linked Kinase (ILK) Binding to Paxillin LD1 Motif Regulates ILK Localization to Focal Adhesions* , 2001, The Journal of Biological Chemistry.

[47]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[48]  B Franz Lang,et al.  The origins of multicellularity: a multi-taxon genome initiative. , 2007, Trends in genetics : TIG.

[49]  Nicholas H. Putnam,et al.  The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans , 2008, Nature.

[50]  Richard O Hynes,et al.  Integrins Bidirectional, Allosteric Signaling Machines , 2002, Cell.

[51]  Morgane Thomas-Chollier,et al.  Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics , 2007, BMC Evolutionary Biology.

[52]  Adam S. Zeiger,et al.  Collagen’s Triglycine Repeat Number and Phylogeny Suggest an Interdomain Transfer Event from a Devonian or Silurian Organism into Trichodesmium erythraeum , 2008, Journal of Molecular Evolution.

[53]  M. Martindale,et al.  Surprisingly complex T‐box gene complement in diploblastic metazoans , 2007, Evolution & development.

[54]  K. Legate,et al.  ILK, PINCH and parvin: the tIPP of integrin signalling , 2006, Nature Reviews Molecular Cell Biology.

[55]  S. Dedhar,et al.  Integrin cytoplasmic interactions and bidirectional transmembrane signalling. , 1996, Current opinion in cell biology.

[56]  Kamran Shalchian-Tabrizi,et al.  Multigene Phylogeny of Choanozoa and the Origin of Animals , 2008, PloS one.

[57]  Robert C. Edgar,et al.  MUSCLE: a multiple sequence alignment method with reduced time and space complexity , 2004, BMC Bioinformatics.

[58]  Gabriel Moreno-Hagelsieb,et al.  Choosing BLAST options for better detection of orthologs as reciprocal best hits , 2008, Bioinform..

[59]  Matthew W. Brown,et al.  Phylogeny of the "forgotten" cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta. , 2009, Molecular biology and evolution.

[60]  D. Hayward,et al.  Unexpected diversity of cnidarian integrins: expression during coral gastrulation , 2008, BMC Evolutionary Biology.

[61]  William Dirks,et al.  Early evolution of animal cell signaling and adhesion genes , 2006, Proceedings of the National Academy of Sciences.

[62]  R. Hynes,et al.  Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. , 2002, Molecular biology of the cell.

[63]  N. King,et al.  The unicellular ancestry of animal development. , 2004, Developmental cell.

[64]  L. Singh,et al.  The Role of Conserved Amino Acid Motifs within the Integrin β3 Cytoplasmic Domain in Triggering Focal Adhesion Kinase Phosphorylation* , 1997, The Journal of Biological Chemistry.

[65]  V. Quaranta,et al.  Integrin cytoplasmic domains mediate inside-out signal transduction , 1994, The Journal of cell biology.

[66]  S. Weed,et al.  Focal Adhesion Kinase: a regulator of focal adhesion dynamics and cell movement , 2000, Oncogene.

[67]  A. Rokas The origins of multicellularity and the early history of the genetic toolkit for animal development. , 2008, Annual review of genetics.