暂无分享,去创建一个
[1] A. Charnes. Optimality and Degeneracy in Linear Programming , 1952 .
[2] G. Dantzig,et al. Notes on Linear Programming: Part 1. The Generalized Simplex Method for Minimizing a Linear Form under Linear Inequality Restraints , 1954 .
[3] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[4] Donald Ervin Knuth,et al. The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .
[5] Alfred V. Aho,et al. The Design and Analysis of Computer Algorithms , 1974 .
[6] F. P. Preparata,et al. Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.
[7] Nesa L'abbe Wu,et al. Linear programming and extensions , 1981 .
[8] R. Seidel. A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions , 1981 .
[9] Leonidas J. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.
[10] Richard Pollack,et al. Multidimensional Sorting , 1983, SIAM J. Comput..
[11] L. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi , 1985, TOGS.
[12] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[13] Raimund Seidel,et al. Constructing higher-dimensional convex hulls at logarithmic cost per face , 1986, STOC '86.
[14] Leonidas J. Guibas,et al. Topologically sweeping an arrangement , 1986, STOC '86.
[15] Herbert Edelsbrunner,et al. Computing a Ham-Sandwich Cut in Two Dimensions , 1986, J. Symb. Comput..
[16] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[17] Franz Aurenhammer,et al. Geometric Relations Among Voronoi Diagrams , 1987, STACS.
[18] Chee-Keng Yap,et al. A geometric consistency theorem for a symbolic perturbation scheme , 1988, SCG '88.