A non-intrusive parallel-in-time approach for simultaneous optimization with unsteady PDEs

ABSTRACT This paper presents a non-intrusive framework for integrating existing unsteady partial differential equation (PDE) solvers into a parallel-in-time simultaneous optimization algorithm. The time-parallelization is provided by the non-intrusive software library XBraid [Parallel multigrid in time, software available at http://llnl.gov/casc/xbraid], which applies an iterative multigrid reduction technique to the time domain of existing time-marching schemes for solving unsteady PDEs. Its general user-interface has been extended in [S. Günther, N.R. Gauger, and J.B. Schroder, A non-intrusive parallel-in-time adjoint solver with the XBraid library, Comput. Vis. Sci. 19 (2018), pp. 85–95. Available at arXiv, math.OC/1705.00663] for computing adjoint sensitivities such that gradients of output quantities with respect to design changes can be computed parallel-in-time alongside with the primal PDE solution. In this paper, the primal and adjoint XBraid iterations are embedded into a simultaneous optimization framework, namely the One-shot method. In this method, design updates towards optimality are employed after each state and adjoint update such that optimality and feasibility of the design and the PDE solution are reached simultaneously. The time-parallel optimization method is validated on an advection-dominated flow control problem which shows significant speedup over a classical time-serial optimization algorithm.

[1]  Takashi Kanamaru,et al.  Van der Pol oscillator , 2007, Scholarpedia.

[2]  Thomas A. Manteuffel,et al.  Multigrid Reduction in Time for Nonlinear Parabolic Problems: A Case Study , 2017, SIAM J. Sci. Comput..

[3]  Nicolas R. Gauger,et al.  Single-step One-shot Aerodynamic Shape Optimization , 2009 .

[4]  David W. Zingg,et al.  A General Framework for the Optimal Control of Unsteady Flows with Applications , 2007 .

[5]  Volker Schulz,et al.  One-Shot Methods for Aerodynamic Shape Optimization , 2009 .

[6]  D. Szyld,et al.  INEXACT AND TRUNCATED PARAREAL-INTIME KRYLOV SUBSPACE METHODS FOR PARABOLIC OPTIMAL CONTROL PROBLEMS , 2012 .

[7]  Sebastian Götschel,et al.  Parallel-in-Time for Parabolic Optimal Control Problems Using PFASST , 2017 .

[8]  N. Anders Petersson,et al.  Two-Level Convergence Theory for Multigrid Reduction in Time (MGRIT) , 2017, SIAM J. Sci. Comput..

[9]  Martin J. Gander,et al.  Schwarz Methods for the Time-Parallel Solution of Parabolic Control Problems , 2016 .

[10]  Matthias Heinkenschloss,et al.  A time-domain decomposition iterative method for the solution of distributed linear quadratic optimal control problems , 2005 .

[11]  Joel Brezillon,et al.  Aerodynamic shape optimization using simultaneous pseudo-timestepping , 2005 .

[12]  Stefan Ulbrich,et al.  Preconditioners Based on “Parareal” Time-Domain Decomposition for Time-Dependent PDE-Constrained Optimization , 2015 .

[13]  A. Katz,et al.  Parallel Time Integration with Multigrid Reduction for a Compressible Fluid Dynamics Application , 2014 .

[14]  George Biros,et al.  Parallel Multiscale Gauss-Newton-Krylov Methods for Inverse Wave Propagation , 2002, ACM/IEEE SC 2002 Conference (SC'02).

[15]  B. Diskin,et al.  Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids , 2009 .

[16]  Leweke,et al.  Model for the transition in bluff body wakes. , 1994, Physical review letters.

[17]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[18]  Robert D. Falgout,et al.  Parallel time integration with multigrid , 2013, SIAM J. Sci. Comput..

[19]  Andreas Griewank,et al.  Reduced Functions, Gradients and Hessians from Fixed-Point Iterations for State Equations , 2002, Numerical Algorithms.

[20]  Martine Baelmans,et al.  A practical globalization of one-shot optimization for optimal design of tokamak divertors , 2017, J. Comput. Phys..

[21]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[22]  U. Trottenberg,et al.  A note on MGR methods , 1983 .

[23]  Jacob B. Schroder,et al.  A non-intrusive parallel-in-time adjoint solver with the XBraid library , 2017, Comput. Vis. Sci..

[24]  C. Williamson Vortex Dynamics in the Cylinder Wake , 1996 .

[25]  A. Jameson Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings , 1991 .

[26]  Martin Stoll,et al.  Domain decomposition in time for PDE-constrained optimization , 2015, Comput. Phys. Commun..

[27]  Andreas Griewank,et al.  Reduced quasi-Newton method for simultaneous design and optimization , 2011, Comput. Optim. Appl..

[28]  M. Rumpfkeil,et al.  The optimal control of unsteady flows with a discrete adjoint method , 2010 .

[29]  Antony Jameson,et al.  Optimum Shape Design for Unsteady Flows with Time-Accurate Continuous and Discrete Adjoint Methods , 2007 .

[30]  Andreas Griewank,et al.  One-Shot Approaches to Design Optimzation , 2014 .

[31]  F. Thiele,et al.  Accurate Discrete Adjoint Approach for Optimal Active Separation Control , 2017 .

[32]  Juan J. Alonso,et al.  Unsteady Aerodynamic Design on Unstructured Meshes with Sliding Interfaces , 2013 .

[33]  Matthias Heinkenschloss,et al.  Integration of Sequential Quadratic Programming and Domain Decomposition Methods for Nonlinear Optimal Control Problems , 2008 .

[34]  Robert D. Falgout,et al.  Convergence of the multigrid reduction in time algorithm for the linear elasticity equations , 2018, Numer. Linear Algebra Appl..

[35]  Scott P. MacLachlan,et al.  A generalized predictive analysis tool for multigrid methods , 2015, Numer. Linear Algebra Appl..

[36]  Nicolas R. Gauger,et al.  High-Performance Derivative Computations using CoDiPack , 2017, ACM Trans. Math. Softw..