Functional characterization of the type 1 inositol 1,4,5-trisphosphate receptor coupling domain SII(+/-) splice variants and the Opisthotonos mutant form.

[1]  D. Mak,et al.  Single-channel recordings of recombinant inositol trisphosphate receptors in mammalian nuclear envelope. , 2001, Biophysical journal.

[2]  K. Mikoshiba,et al.  Neuronal plasticity in hippocampal mossy fiber–CA3 synapses of mice lacking the inositol-1,4,5-trisphosphate type 1 receptor , 2001, Brain Research.

[3]  M. Iino,et al.  Ca2+‐sensor region of IP3 receptor controls intracellular Ca2+ signaling , 2001 .

[4]  L. Missiaen,et al.  Mapping of the ATP-binding Sites on Inositol 1,4,5-Trisphosphate Receptor Type 1 and Type 3 Homotetramers by Controlled Proteolysis and Photoaffinity Labeling* , 2001, The Journal of Biological Chemistry.

[5]  D. Boehning,et al.  Direct association of ligand‐binding and pore domains in homo‐ and heterotetrameric inositol 1,4,5‐trisphosphate receptors , 2000, The EMBO journal.

[6]  K. Mikoshiba,et al.  Synaptic plasticity in hippocampal CA1 neurons of mice lacking type 1 inositol-1,4,5-trisphosphate receptors. , 2000, Learning & memory.

[7]  D. Boehning,et al.  Functional Properties of Recombinant Type I and Type III Inositol 1,4,5-Trisphosphate Receptor Isoforms Expressed in COS-7 Cells* , 2000, The Journal of Biological Chemistry.

[8]  L. Missiaen,et al.  Differential modulation of inositol 1,4,5-trisphosphate receptor type 1 and type 3 by ATP. , 2000, Cell calcium.

[9]  S. Joseph,et al.  The Interaction of Calmodulin with Alternatively Spliced Isoforms of the Type-I Inositol Trisphosphate Receptor* , 2000, The Journal of Biological Chemistry.

[10]  Kenzo Hirose,et al.  Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes , 1999, The EMBO journal.

[11]  L. Missiaen,et al.  Adenine-nucleotide binding sites on the inositol 1,4,5-trisphosphate receptor bind caffeine, but not adenophostin A or cyclic ADP-ribose. , 1999, Cell calcium.

[12]  C. Taylor,et al.  Inositol trisphosphate receptors: Ca2+-modulated intracellular Ca2+ channels. , 1998, Biochimica et biophysica acta.

[13]  S. Caenepeel,et al.  Single channel function of recombinant type-1 inositol 1,4,5-trisphosphate receptor ligand binding domain splice variants. , 1998, Biophysical journal.

[14]  M Fill,et al.  Isoform-specific function of single inositol 1,4,5-trisphosphate receptor channels. , 1998, Biophysical journal.

[15]  I. Bezprozvanny,et al.  Single-Channel Properties of Inositol (1,4,5)-Trisphosphate Receptor Heterologously Expressed in HEK-293 Cells , 1998, The Journal of general physiology.

[16]  M. Takahashi,et al.  Functional Properties of the Type-3 InsP3 Receptor in 16HBE14o− Bronchial Mucosal Cells* , 1998, The Journal of Biological Chemistry.

[17]  T. Kurosaki,et al.  Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5‐trisphosphate receptors in signal transduction through the B‐cell antigen receptor , 1997, The EMBO journal.

[18]  M. Bosma,et al.  The Type 1 Inositol 1,4,5-Trisphosphate Receptor Gene Is Altered in the opisthotonos Mouse , 1997, The Journal of Neuroscience.

[19]  K. Kangawa,et al.  Isolation and characterization of vascular smooth muscle inositol 1,4,5-trisphosphate receptor. , 1996, The Biochemical journal.

[20]  K. Mikoshiba,et al.  Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor , 1996, Nature.

[21]  S. Snyder,et al.  Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux , 1995, Cell.

[22]  I. Bezprozvanny,et al.  The inositol 1,4,5-trisphosphate (InsP3) receptor , 1995, The Journal of Membrane Biology.

[23]  S. Samanta,et al.  Trypsin digestion of the inositol trisphosphate receptor: implications for the conformation and domain organization of the protein. , 1995, The Biochemical journal.

[24]  I. Bezprozvanny,et al.  Inositol (1,4,5)-trisphosphate (InsP3)-gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium , 1994, The Journal of general physiology.

[25]  K. Mikoshiba,et al.  Intracellular channels , 1994, Current Opinion in Neurobiology.

[26]  A. Marks,et al.  Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein , 1994, Cell.

[27]  K.,et al.  Cyclic AMP-dependent phosphorylation of an immunoaffinity-purified homotetrameric inositol 1,4,5-trisphosphate receptor (type I) increases Ca2+ flux in reconstituted lipid vesicles. , 1994, The Journal of biological chemistry.

[28]  I. Bezprozvanny,et al.  ATP modulates the function of inositol 1,4,5-trisphosphate-gated channels at two sites , 1993, Neuron.

[29]  M. Berridge Inositol trisphosphate and calcium signalling , 1993, Nature.

[30]  S. Snyder,et al.  Inositol phosphate receptors and calcium disposition in the brain , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  K. Mikoshiba,et al.  Differential Localization of Alternative Spliced Transcripts Encoding Inositol 1,4,5‐Trisphosphate Receptors in Mouse Cerebellum and Hippocampus: In Situ Hybridization Study , 1991, Journal of neurochemistry.

[32]  M. Iino Effects of adenine nucleotides on inositol 1,4,5-trisphosphate-induced calcium release in vascular smooth muscle cells , 1991, The Journal of general physiology.

[33]  R Horn,et al.  Estimating the number of channels in patch recordings. , 1991, Biophysical journal.

[34]  K. Mikoshiba,et al.  The subtypes of the mouse inositol 1,4,5-trisphosphate receptor are expressed in a tissue-specific and developmentally specific manner. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[35]  James Watras,et al.  Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum , 1991, Nature.

[36]  K. Mikoshiba,et al.  Structure-function relationships of the mouse inositol 1,4,5-trisphosphate receptor. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[37]  S. M. Goldin,et al.  Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. , 1991, Science.

[38]  S. Snyder,et al.  Inositol 1,4,5-trisphosphate receptors: distinct neuronal and nonneuronal forms derived by alternative splicing differ in phosphorylation. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[39]  R. Huganir,et al.  Inositol trisphosphate receptor: phosphorylation by protein kinase C and calcium calmodulin-dependent protein kinases in reconstituted lipid vesicles. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[40]  R. Huganir,et al.  Inositol 1,4,5-trisphosphate receptor is phosphorylated by cyclic AMP-dependent protein kinase at serines 1755 and 1589. , 1991, Biochemical and biophysical research communications.

[41]  K. Mikoshiba,et al.  Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum. , 1991, The Journal of biological chemistry.

[42]  T. Südhof,et al.  The ligand binding site and transduction mechanism in the inositol‐1,4,5‐triphosphate receptor. , 1990, The EMBO journal.

[43]  T. Südhof,et al.  Structure and expression of the rat inositol 1,4,5-trisphosphate receptor. , 1990, The Journal of biological chemistry.

[44]  M. Iino,et al.  Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci , 1990, The Journal of general physiology.

[45]  R. Huganir,et al.  Calcium flux mediated by purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles is allosterically regulated by adenine nucleotides. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[46]  T. Südhof,et al.  Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor , 1989, Nature.

[47]  K. Mikoshiba,et al.  Phosphorylation of P400 Protein by Cyclic AMP‐Dependent Protein Kinase and Ca2+/Calmodulin‐Dependent Protein Kinase II , 1989, Journal of neurochemistry.

[48]  S. Snyder,et al.  Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[49]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[50]  B. Sakmann,et al.  Single-Channel Recording , 1995, Springer US.

[51]  K. Mikoshiba,et al.  Erratum: Intracellular channels (Current Opinion in Neurobiology (1994) 4 (294-303)) , 1994 .

[52]  S. Snyder,et al.  Inositol 1,4,5-trisphosphate-activated calcium channels. , 1992, Annual review of physiology.

[53]  A. Fabiato,et al.  Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. , 1988, Methods in enzymology.

[54]  Alan G. Hawkes,et al.  The Principles of the Stochastic Interpretation of Ion-Channel Mechanisms , 1983 .