Semiparametric Estimation of Stochastic Production Frontier Models

This article extends the linear stochastic frontier model proposed by Aigner, Lovell, and Schmidt to a semiparametric frontier model in which the functional form of the production frontier is unspecified and the distributions of the composite error terms are of known form. Pseudolikelihood estimators of the parameters characterizing the two error terms of the model are constructed based on kernel estimation of the conditional mean function. The Monte Carlo results show that the proposed estimators perform well in finite samples. An empirical application is presented. Extensions to a partially linear frontier function and to more flexible one-sided error distributions than the half-normal are discussed

[1]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[2]  M. Weinstein Query 2: The Sum of Values from a Normal and a Truncated Normal Distribution , 1964 .

[3]  D. Poirier,et al.  On the Estimation of Production Frontiers: Maximum Likelihood Estimation of the Parameters of a Discontinuous Density Function , 1976 .

[4]  W. Meeusen,et al.  Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error , 1977 .

[5]  G. Battese,et al.  ESTIMATION OF A PRODUCTION FRONTIER MODEL: WITH APPLICATION TO THE PASTORAL ZONE OF EASTERN AUSTRALIA , 1977 .

[6]  D. Aigner,et al.  P. Schmidt, 1977,?Formulation and estimation of stochastic frontier production function models,? , 1977 .

[7]  Peter Schmidt,et al.  A Monte Carlo study of estimators of stochastic frontier production functions , 1980 .

[8]  R. Stevenson Likelihood functions for generalized stochastic frontier estimation , 1980 .

[9]  Jerry A. Hausman,et al.  Panel Data and Unobservable Individual Effects , 1981 .

[10]  C. Lovell,et al.  On the estimation of technical inefficiency in the stochastic frontier production function model , 1982 .

[11]  Lung-fei Lee A Test for Distributional Assumptions for the Stochastic Frontier Functions , 1983 .

[12]  Peter Schmidt,et al.  Simple tests of alternative specifications in stochastic frontier models , 1984 .

[13]  P. Schmidt,et al.  Production Frontiers and Panel Data , 1984 .

[14]  P. Robinson ROOT-N-CONSISTENT SEMIPARAMETRIC REGRESSION , 1988 .

[15]  P. Schmidt,et al.  Production frontiers with cross-sectional and time-series variation in efficiency levels , 1990 .

[16]  P. Bauer Recent developments in the econometric estimation of frontiers , 1990 .

[17]  Raymond J. Kopp,et al.  Moment-based estimation and testing of stochastic frontier models , 1990 .

[18]  W. Greene A Gamma-distributed stochastic frontier model , 1990 .

[19]  Lawrence M. Seiford,et al.  Recent developments in dea : the mathematical programming approach to frontier analysis , 1990 .

[20]  Léopold Simar,et al.  Estimating efficiencies from frontier models with panel data: A comparison of parametric, non-parametric and semi-parametric methods with bootstrapping , 1992 .

[21]  P. W. Wilson Detecting Outliers in Deterministic Nonparametric Frontier Models with Multiple Outputs , 1993 .

[22]  Léopold Simar,et al.  Efficient Semiparametric Estimation in a Stochastic Frontier Model , 1994 .

[23]  R. Romain,et al.  Efficacitè technique et coûts de production dans les secteurs laitiers du Québec et de l'Ontario , 1995 .

[24]  Yanqin Fan,et al.  Consistent model specification tests : Omitted variables and semiparametric functional forms , 1996 .