Spanning forests and the vector bundle Laplacian

The classical matrix-tree theorem relates the determinant of the combinatorial Laplacian on a graph to the number of spanning trees. We generalize this result to Laplacians on one- and two-dimensional vector bundles, giving a combinatorial interpretation of their determinants in terms of so-called cycle rooted spanning forests (CRSFs). We construct natural measures on CRSFs for which the edges form a determinantal process. This theory gives a natural generalization of the spanning tree process adapted to graphs embedded on surfaces. We give a number of other applications, for example, we compute the probability that a loop-erased random walk on a planar graph between two vertices on the outer boundary passes left of two given faces. This probability cannot be computed using the standard Laplacian alone.

[1]  G. Kirchhoff Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .

[2]  W. T. Tutte,et al.  The Dissection of Rectangles Into Squares , 1940 .

[3]  R. Pemantle Choosing a Spanning Tree for the Integer Lattice Uniformly , 1991, math/0404043.

[4]  Satya N. Majumdar,et al.  Height correlations in the Abelian sandpile model , 1991 .

[5]  Majumdar Exact fractal dimension of the loop-erased self-avoiding walk in two dimensions. , 1992, Physical review letters.

[6]  R. Pemantle,et al.  Local Characteristics, Entropy and Limit Theorems for Spanning Trees and Domino Tilings Via Transfer-Impedances , 1993, math/0404048.

[7]  R. Forman Determinants of Laplacians on graphs , 1993 .

[8]  David Bruce Wilson,et al.  Generating random spanning trees more quickly than the cover time , 1996, STOC '96.

[9]  David Bruce Wilson,et al.  Trees and Matchings , 2000, Electron. J. Comb..

[10]  R. Kenyon,et al.  Dominos and the Gaussian Free Field , 2000, math-ph/0002027.

[11]  Amoebas of maximal area. , 2000, math/0010087.

[12]  R. Kenyon Long-range properties of spanning trees , 2000 .

[13]  A. Soshnikov Determinantal random point fields , 2000, math/0002099.

[14]  Richard Kenyon,et al.  The asymptotic determinant of the discrete Laplacian , 2000, math-ph/0011042.

[15]  Wendelin Werner,et al.  Conformal invariance of planar loop-erased random walks and uniform spanning trees , 2001 .

[16]  Moduli spaces of local systems and higher Teichmüller theory , 2003, math/0311149.

[17]  R. Kenyon,et al.  Dimers and amoebae , 2003, math-ph/0311005.

[18]  Andrei Okounkov,et al.  Planar dimers and Harnack curves , 2003 .

[19]  Critical resonance in the non-intersecting lattice path model , 2001, math/0111199.

[20]  Loops statistics in the toroidal honeycomb dimer model , 2006, math/0608600.

[21]  Y. Peres,et al.  Determinantal Processes and Independence , 2005, math/0503110.

[22]  Monotone loop models and rational resonance , 2008, 0806.1236.

[23]  R. Kenyon Conformal Invariance of Loops in the Double-Dimer Model , 2011, 1105.4158.